Lightweight IoT Malware Detection Solution Using CNN Classification
- URL: http://arxiv.org/abs/2010.06286v2
- Date: Wed, 21 Oct 2020 15:05:45 GMT
- Title: Lightweight IoT Malware Detection Solution Using CNN Classification
- Authors: Ahmad M.N. Zaza, Suleiman K. Kharroub, Khalid Abualsaud
- Abstract summary: The security aspect of IoT devices is an infant field, which is why it is our focus in this paper.
We developed a system that can recognize malicious behavior of a specific IoT node on the network.
Through convolutional neural network and monitoring, we were able to provide malware detection for IoT using a central node that can be installed within the network.
- Score: 2.288885651912488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Internet of Things (IoT) is becoming more frequently used in more
applications as the number of connected devices is in a rapid increase. More
connected devices result in bigger challenges in terms of scalability,
maintainability and most importantly security especially when it comes to 5G
networks. The security aspect of IoT devices is an infant field, which is why
it is our focus in this paper. Multiple IoT device manufacturers do not
consider securing the devices they produce for different reasons like cost
reduction or to avoid using energy-harvesting components. Such potentially
malicious devices might be exploited by the adversary to do multiple harmful
attacks. Therefore, we developed a system that can recognize malicious behavior
of a specific IoT node on the network. Through convolutional neural network and
monitoring, we were able to provide malware detection for IoT using a central
node that can be installed within the network. The achievement shows how such
models can be generalized and applied easily to any network while clearing out
any stigma regarding deep learning techniques.
Related papers
- Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - IoTScent: Enhancing Forensic Capabilities in Internet of Things Gateways [45.44831696628473]
This paper presents IoTScent, an open-source forensic tool that enables IoT gateways and Home Automation platforms to perform IoT traffic capture and analysis.
IoTScent is specifically designed to operate over IEEE5.4-based traffic, which is the basis for many IoT-specific protocols such as Zigbee, 6LoWPAN and Thread.
This work provides a comprehensive description of the IoTScent tool, including a practical use case that demonstrates the use of the tool to perform device identification from Zigbee traffic.
arXiv Detail & Related papers (2023-10-05T09:10:05Z) - Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future [6.422895251217666]
This paper reviews forensic and security issues associated with IoT in different fields.
Most IoT devices are vulnerable to attacks due to a lack of standardized security measures.
To fulfil the security-conscious needs of consumers, IoT can be used to develop a smart home system.
arXiv Detail & Related papers (2023-09-06T04:41:48Z) - CNN based IoT Device Identification [0.0]
We present a method that identifies devices in the Aalto dataset using the convolutional neural network (CNN)
In this study, we present a method that identifies devices in the Aalto dataset using the convolutional neural network (CNN)
arXiv Detail & Related papers (2023-04-27T00:37:16Z) - IoT Device Identification Based on Network Communication Analysis Using
Deep Learning [43.0717346071013]
The risk of attacks on an organization's network has increased due to the growing use of less secure IoT devices.
To tackle this threat and protect their networks, organizations generally implement security policies in which only white listed IoT devices are allowed on the network.
In this research, deep learning is applied to network communication for the automated identification of IoT devices permitted on the network.
arXiv Detail & Related papers (2023-03-02T13:44:58Z) - Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network [0.0]
Internet of Things (IoT) has altered living by controlling devices/things over the Internet.
To bring down the IoT network, attackers can utilise these devices to conduct a variety of network attacks.
In this paper, we have developed an unsupervised ensemble learning model that is able to detect new or unknown attacks in an IoT network from an unlabelled dataset.
arXiv Detail & Related papers (2022-07-16T11:12:32Z) - Autonomous Maintenance in IoT Networks via AoI-driven Deep Reinforcement
Learning [73.85267769520715]
Internet of Things (IoT) with its growing number of deployed devices and applications raises significant challenges for network maintenance procedures.
We formulate a problem of autonomous maintenance in IoT networks as a Partially Observable Markov Decision Process.
We utilize Deep Reinforcement Learning algorithms (DRL) to train agents that decide if a maintenance procedure is in order or not and, in the former case, the proper type of maintenance needed.
arXiv Detail & Related papers (2020-12-31T11:19:51Z) - IoT Device Identification Using Deep Learning [43.0717346071013]
The growing use of IoT devices in organizations has increased the number of attack vectors available to attackers.
The widely adopted bring your own device (BYOD) policy which allows an employee to bring any IoT device into the workplace and attach it to an organization's network also increases the risk of attacks.
In this study, we applied deep learning on network traffic to automatically identify IoT devices connected to the network.
arXiv Detail & Related papers (2020-02-25T12:24:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.