IoT Behavioral Monitoring via Network Traffic Analysis
- URL: http://arxiv.org/abs/2001.10632v1
- Date: Tue, 28 Jan 2020 23:13:12 GMT
- Title: IoT Behavioral Monitoring via Network Traffic Analysis
- Authors: Arunan Sivanathan
- Abstract summary: This thesis is the culmination of our efforts to develop techniques to profile the network behavioral pattern of IoTs.
We develop a robust machine learning-based inference engine trained with attributes from traffic patterns.
We demonstrate real-time classification of 28 IoT devices with over 99% accuracy.
- Score: 0.45687771576879593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smart homes, enterprises, and cities are increasingly being equipped with a
plethora of Internet of Things (IoT), ranging from smart-lights to security
cameras. While IoT networks have the potential to benefit our lives, they
create privacy and security challenges not seen with traditional IT networks.
Due to the lack of visibility, operators of such smart environments are not
often aware of their IoT assets, let alone whether each IoT device is
functioning properly safe from cyber-attacks. This thesis is the culmination of
our efforts to develop techniques to profile the network behavioral pattern of
IoTs, automate IoT classification, deduce their operating context, and detect
anomalous behavior indicative of cyber-attacks.
We begin this thesis by surveying IoT ecosystem, while reviewing current
approaches to vulnerability assessments, intrusion detection, and behavioral
monitoring. For our first contribution, we collect traffic traces and
characterize the network behavior of IoT devices via attributes from traffic
patterns. We develop a robust machine learning-based inference engine trained
with these attributes and demonstrate real-time classification of 28 IoT
devices with over 99% accuracy. Our second contribution enhances the
classification by reducing the cost of attribute extraction while also
identifying IoT device states. Prototype implementation and evaluation
demonstrate the ability of our supervised machine learning method to detect
behavioral changes for five IoT devices. Our third and final contribution
develops a modularized unsupervised inference engine that dynamically
accommodates the addition of new IoT devices and/or updates to existing ones,
without requiring system-wide retraining of the model. We demonstrate via
experiments that our model can automatically detect attacks and firmware
changes in ten IoT devices with over 94% accuracy.
Related papers
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoT ecosystem provides rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, and audio.
Machine learning presents a rich opportunity to automatically process IoT data at scale.
We introduce IoT-LM, an open-source large multisensory language model tailored for the IoT ecosystem.
arXiv Detail & Related papers (2024-07-13T08:20:37Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
The next generation of machine learning systems must be adept at perceiving and interacting with the physical world.
sensory data from motion, thermal, geolocation, depth, wireless signals, video, and audio are increasingly used to model the states of physical environments.
Existing efforts are often specialized to a single sensory modality or prediction task.
This paper proposes MultiIoT, the most expansive and unified IoT benchmark to date, encompassing over 1.15 million samples from 12 modalities and 8 real-world tasks.
arXiv Detail & Related papers (2023-11-10T18:13:08Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - An Intelligent Mechanism for Monitoring and Detecting Intrusions in IoT
Devices [0.7219077740523682]
This work proposes a Host-based Intrusion Detection Systems that leverages Federated Learning and Multi-Layer Perceptron neural networks to detected cyberattacks on IoT devices with high accuracy and enhancing data privacy protection.
arXiv Detail & Related papers (2023-06-23T11:26:00Z) - Detecting Anomalous Microflows in IoT Volumetric Attacks via Dynamic
Monitoring of MUD Activity [1.294952045574009]
Anomaly-based detection methods are promising in finding new attacks.
There are certain practical challenges like false-positive alarms, hard to explain, and difficult to scale cost-effectively.
In this paper, we use SDN to enforce and monitor the expected behaviors of each IoT device.
arXiv Detail & Related papers (2023-04-11T05:17:51Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network [0.0]
Internet of Things (IoT) has altered living by controlling devices/things over the Internet.
To bring down the IoT network, attackers can utilise these devices to conduct a variety of network attacks.
In this paper, we have developed an unsupervised ensemble learning model that is able to detect new or unknown attacks in an IoT network from an unlabelled dataset.
arXiv Detail & Related papers (2022-07-16T11:12:32Z) - Autonomous Maintenance in IoT Networks via AoI-driven Deep Reinforcement
Learning [73.85267769520715]
Internet of Things (IoT) with its growing number of deployed devices and applications raises significant challenges for network maintenance procedures.
We formulate a problem of autonomous maintenance in IoT networks as a Partially Observable Markov Decision Process.
We utilize Deep Reinforcement Learning algorithms (DRL) to train agents that decide if a maintenance procedure is in order or not and, in the former case, the proper type of maintenance needed.
arXiv Detail & Related papers (2020-12-31T11:19:51Z) - Towards Learning-automation IoT Attack Detection through Reinforcement
Learning [14.363292907140364]
Internet of Things (IoT) networks have unique characteristics, which make the attack detection more challenging.
In addition to the traditional high-rate attacks, the low-rate attacks are also extensively used by IoT attackers to obfuscate the legitimate traffic.
We propose a reinforcement learning-based attack detection model that can automatically learn and recognize the transformation of the attack pattern.
arXiv Detail & Related papers (2020-06-29T06:12:45Z) - Blockchain-based Smart-IoT Trust Zone Measurement Architecture [1.5749416770494706]
Internet of Things (IoT) has gained a tremendous attention and become a central aspect of our environment.
In this paper, we propose a behavior monitor in IoT- setup which can provide trust-confidence to outside networks.
In addition, we also incorporate Trusted Execution Technology (Intel SGX) in order to provide a secure execution environment for applications and data on blockchain.
arXiv Detail & Related papers (2020-01-08T03:41:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.