論文の概要: Assembly robots with optimized control stiffness through reinforcement
learning
- arxiv url: http://arxiv.org/abs/2002.12207v1
- Date: Thu, 27 Feb 2020 15:54:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 09:32:00.793339
- Title: Assembly robots with optimized control stiffness through reinforcement
learning
- Title(参考訳): 強化学習による制御剛性を最適化した組立ロボット
- Authors: Masahide Oikawa, Kyo Kutsuzawa, Sho Sakaino, Toshiaki Tsuji
- Abstract要約: 本稿では,ロボットの性能向上のために強化学習を利用する手法を提案する。
提案手法は,局所軌道最適化の性能向上に役立つ剛性行列のオンライン生成を保証する。
本手法の有効性は,2つのコンタクトリッチタスクを含む実験により検証した。
- 参考スコア(独自算出の注目度): 3.4410212782758047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is an increased demand for task automation in robots. Contact-rich
tasks, wherein multiple contact transitions occur in a series of operations,
are extensively being studied to realize high accuracy. In this study, we
propose a methodology that uses reinforcement learning (RL) to achieve high
performance in robots for the execution of assembly tasks that require precise
contact with objects without causing damage. The proposed method ensures the
online generation of stiffness matrices that help improve the performance of
local trajectory optimization. The method has an advantage of rapid response
owing to short sampling time of the trajectory planning. The effectiveness of
the method was verified via experiments involving two contact-rich tasks. The
results indicate that the proposed method can be implemented in various
contact-rich manipulations. A demonstration video shows the performance.
(https://youtu.be/gxSCl7Tp4-0)
- Abstract(参考訳): ロボットのタスク自動化に対する需要が高まっている。
一連の操作で複数の接触遷移が発生するコンタクトリッチタスクは、高い精度を実現するために広く研究されている。
本研究では,ロボットの強化学習(RL)を用いて,損傷を生じさせることなく,物体との正確な接触を必要とする組立作業を実行する手法を提案する。
提案手法は,局所軌道最適化の性能向上に役立つ剛性行列のオンライン生成を保証する。
この手法は軌道計画の短サンプリング時間による迅速な応答の利点がある。
本手法の有効性は,2つのコンタクトリッチタスクを含む実験により検証した。
提案手法は様々なコンタクトリッチな操作で実装可能であることを示す。
デモビデオはパフォーマンスを示しています。
(https://youtu.be/gxSCl7Tp4-0)
関連論文リスト
- SPIRE: Synergistic Planning, Imitation, and Reinforcement Learning for Long-Horizon Manipulation [58.14969377419633]
タスクをより小さな学習サブプロブレムに分解し、第2に模倣と強化学習を組み合わせてその強みを最大化するシステムであるspireを提案する。
我々は、模倣学習、強化学習、計画を統合する従来の手法よりも平均タスク性能が35%から50%向上していることを発見した。
論文 参考訳(メタデータ) (2024-10-23T17:42:07Z) - Affordance-based Robot Manipulation with Flow Matching [6.863932324631107]
本フレームワークは,ロボット操作のためのフローマッチングにより,手頃なモデル学習とトラジェクトリ生成を統一する。
評価の結果,提案手法は,言語プロンサによる手軽さを学習し,競争性能を向上することがわかった。
本フレームワークは,ロボット操作のためのフローマッチングにより,相性モデル学習と軌道生成をシームレスに統合する。
論文 参考訳(メタデータ) (2024-09-02T09:11:28Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
模倣学習は、ロボットが操作スキルを取得するための強力な機械学習アルゴリズムである。
本稿では,グラフ検索と検索により,最適下実験から学習する,シンプルで効果的なアルゴリズムGSRを提案する。
GSRは、ベースラインに比べて10%から30%高い成功率、30%以上の熟練を達成できる。
論文 参考訳(メタデータ) (2024-07-22T06:12:21Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
触覚能動推論強化学習(Tactile Active Inference Reinforcement Learning, Tactile-AIRL)と呼ばれるロボット操作におけるスキル学習手法を提案する。
強化学習(RL)の性能を高めるために,モデルに基づく手法と本質的な好奇心をRLプロセスに統合した能動推論を導入する。
本研究では,タスクをプッシュする非包括的オブジェクトにおいて,学習効率が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-11-19T10:19:22Z) - Demonstration-Guided Reinforcement Learning with Efficient Exploration
for Task Automation of Surgical Robot [54.80144694888735]
効率的な強化学習アルゴリズムであるDEX(Demonstration-Guided Exploration)を導入する。
本手法は,生産的相互作用を促進するために,高い値で専門家のような行動を推定する。
総合的な手術シミュレーションプラットフォームであるSurRoLによる10ドルの手術操作に関する実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-02-20T05:38:54Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
本稿では,複雑なロボットタスクの制御ポリシーを1つの実演で学習するために,シーケンシャルなバイアスを活用することを提案する。
本研究は, ヒューマノイド移動やスタンドアップなど, 模擬課題のいくつかを, 前例のないサンプル効率で解くことができることを示す。
論文 参考訳(メタデータ) (2022-11-09T10:28:40Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z) - Efficient Robotic Manipulation Through Offline-to-Online Reinforcement
Learning and Goal-Aware State Information [5.604859261995801]
本稿では、遷移性能低下を解消するオフラインからオフラインまでの統一的なRLフレームワークを提案する。
目標認識状態情報をRLエージェントに導入することにより,タスクの複雑性を大幅に低減し,政策学習を加速することができる。
本フレームワークは,複数のロボット操作タスクにおける最先端手法と比較して,優れたトレーニング効率と性能を実現する。
論文 参考訳(メタデータ) (2021-10-21T05:34:25Z) - Learning Robotic Manipulation Skills Using an Adaptive Force-Impedance
Action Space [7.116986445066885]
強化学習は、様々な困難な意思決定タスクにおいて、有望な結果をもたらしました。
高速な人間のような適応制御手法は複雑なロボットの相互作用を最適化するが、非構造化タスクに必要なマルチモーダルフィードバックを統合することができない。
本稿では,階層的学習と適応アーキテクチャにおける学習問題を要因として,両世界を最大限に活用することを提案する。
論文 参考訳(メタデータ) (2021-10-19T12:09:02Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGenは、サブゴールを予測するための学習されたポリシーと、これらのサブゴールに到達するために必要な動作を計画し実行するためのモーションジェネレータを組み合わせたフレームワークである。
本手法は,フォトリアリスティック・シミュレーション環境における7つのロボットタスクの多種多様なセットをベンチマークする。
ReLMoGenは、テスト時に異なるモーションジェネレータ間で顕著な転送可能性を示し、実際のロボットに転送する大きな可能性を示している。
論文 参考訳(メタデータ) (2020-08-18T08:05:15Z) - Constrained-Space Optimization and Reinforcement Learning for Complex
Tasks [42.648636742651185]
Demonstrationからの学習は、オペレータ操作スキルをロボットに転送するためにますます利用されている。
本稿では,複雑なタスクを管理するための制約付き空間最適化と強化学習手法を提案する。
論文 参考訳(メタデータ) (2020-04-01T21:50:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。