Quartet states in two-electron quantum dots in bilayer graphene
- URL: http://arxiv.org/abs/2002.12845v1
- Date: Fri, 28 Feb 2020 16:21:57 GMT
- Title: Quartet states in two-electron quantum dots in bilayer graphene
- Authors: Angelika Knothe and Vladimir Fal'ko
- Abstract summary: We study single- and two-particle states in quantum dots formed in gapped bilayer graphene (BLG)
We analyse spin- and valley-singlet and triplet states for various BLG and dot parameters, as well as two-particle interaction strength and external magnetic field.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trapping electrons in quantum dots and controlling their collective quantum
states is crucial for converting semiconductor structures into bits of quantum
information processing. Here, we study single- and two-particle states in
quantum dots formed in gapped bilayer graphene (BLG), where the electron's
valley states appear in pair with their spin quantum number and we analyse
spin- and valley-singlet and triplet states for various BLG and dot parameters,
as well as two-particle interaction strength and external magnetic field.
Related papers
- Realizing Topological Quantum Walks on NISQ Digital Quantum Computer [0.0]
We study the quantum walk on the off-diagonal Aubry-Andr'e-Harper lattice with periodic modulation using a digital quantum computer.
Initiating the quantum walk with a particle at the lattice edge reveals the robustness of the edge state, attributed to the topological nature of the AAH model.
We extend our investigation to the quantum walk of two particles with nearest-neighbour (NN) interaction.
arXiv Detail & Related papers (2024-02-28T20:05:14Z) - A Cooper-pair beam splitter as a feasible source of entangled electrons [0.0]
We investigate the generation of an entangled electron pair emerging from a system composed of two quantum dots attached to a superconductor Cooper pair beam splitter.
We take into account three processes: Crossed Andreev Reflection, cotuneling, and Coulomb interaction.
Several entanglement quantifiers, including quantum mutual information, negativity, and concurrence, are employed to validate our findings.
arXiv Detail & Related papers (2024-01-29T18:46:53Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Jellybean quantum dots in silicon for qubit coupling and on-chip quantum
chemistry [0.6818394664182874]
Small size and excellent integrability of silicon metal-oxide-semiconductor (SiMOS) quantum dot spin qubits make them an attractive system for mass-manufacturable, scaled-up quantum processors.
This paper investigates the charge and spin characteristics of an elongated quantum dot for the prospects of acting as a qubit-qubit coupler.
arXiv Detail & Related papers (2022-08-08T12:24:46Z) - An electrically-driven single-atom `flip-flop' qubit [43.55994393060723]
Quantum information is encoded in the electron-nuclear states of a phosphorus donor.
Results pave the way to the construction of solid-state quantum processors.
arXiv Detail & Related papers (2022-02-09T13:05:12Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Spin-Dependent Transport Through a Colloidal Quantum Dot: The Role of
Exchange Interactions [0.0]
We combine atomistic electronic structure calculations with quantum master equation methods to study the transport of electrons and holes through strongly confined quantum dots.
We find that a competition between the energy spacing between the two lowest quasiparticle energy levels determines the spin states of the lowest two quasiparticle energy levels.
The low density of electron states results in a spin singlet being the lowest energy two-electron state whereas, in contrast, the high density of states and significant exchange interaction results in a spin triplet being the lowest energy two-hole state.
arXiv Detail & Related papers (2021-02-15T19:00:00Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Analytical view on tunnable electrostatic quantum swap gate in
tight-binding model [0.0]
Generalized electrostatic quantum swap gate implemented in the chain of 2 double coupled quantum dots using single electron in semiconductor is presented.
The anticorrelation principle coming from Coulomb electrostatic repulsion is exploited in single electron devices.
The formation of quantum entanglement is specified and supported by analytical results.
arXiv Detail & Related papers (2020-01-07T02:20:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.