Trion quantum coherence in site-controlled pyramidal InGaAs quantum dots
- URL: http://arxiv.org/abs/2506.20339v1
- Date: Wed, 25 Jun 2025 11:49:43 GMT
- Title: Trion quantum coherence in site-controlled pyramidal InGaAs quantum dots
- Authors: R. A. Barcan, I. Samaras, K. Barr, G. Juska, E. Pelucchi, K. G. Lagoudakis,
- Abstract summary: We study the coherent dynamics of positively charged excitons under the influence of strong magnetic fields in the configuration of pyramidal quantum dots.<n>Results pave the way towards establishing site-controlled pyramidal InGaAs QDs as scalable platforms for quantum information processing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deterministically positioned pyramidal InGaAs quantum dots (QDs) exhibit exceptional quantum properties, making them highly promising candidates for scalable on-chip quantum information processing. In this work, we investigate the coherent dynamics of positively charged excitons under the influence of strong magnetic fields in the Faraday configuration. Pyramidal quantum dots exhibit a fourfold splitting of the charged excitons even in the Faraday configuration, giving rise to an optically addressable double-{\Lambda} system akin to self-assembled quantum dots in oblique magnetic fields. Here, we investigate ultrafast complete coherent control of the trion to ground state transition utilizing advanced optical resonant excitation techniques and we observe quantum coherence over timescales that are similar to other prominent quantum dot platforms. These results pave the way towards establishing site-controlled pyramidal InGaAs QDs as scalable platforms for quantum information processing, expanding the reach of coherent control to new quantum systems.
Related papers
- Magnetic Memory and Hysteresis from Quantum Transitions: Theory and Experiments on Quantum Annealers [0.6990493129893112]
We present a conceptual framework that explains the observed behavior by combining two-level-Zener transitions via a first-order piecewise- propagator with semiclassical domain-wall kinetics.<n>Our framework reproduces the measured densities, loops, shapes, and longitudinal sweep-rate scaling trends observed data from three different D-Wave annealers.<n>These results establish programmable quantum annealers as powerful testbeds for exploring memory-endowed non-equilibrium dynamics in quantumbody systems.
arXiv Detail & Related papers (2025-07-24T04:03:04Z) - Topological control of quantum speed limits [55.2480439325792]
We show that even if the quantum state is completely dispersionless, QFI in this state remains momentum-resolved.<n>We find bounds on quantum speed limit which scales as $sqrt|C|$ in a (dispersionless) topological phase.
arXiv Detail & Related papers (2025-07-21T18:00:07Z) - Dynamics of Quantum Coherence and Quantum Fisher Information of a V-type Atom in Isotropic Photonic Crystal [0.0]
Time evolution of quantum Fisher information, quantum coherence, and non-Markovianity of a V-type three-level atom embedded in free space have been investigated.
It has been demonstrated that the photonic band gap crystal, as a structured environment, significantly influences the preservation and enhancement of these quantum features.
arXiv Detail & Related papers (2023-12-15T16:23:04Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Effect of induced transition on the quantum entanglement and coherence
in two-coupled double quantum dots system [0.0]
Double quantum dots (DQDs) appear as a versatile platform for technological breakthroughs in quantum computation and nanotechnology.
This work inspects the thermal entanglement and quantum coherence in two-coupled DODs, where the system is exposed to an external stimulus that induces an electronic transition within each subsystem.
arXiv Detail & Related papers (2022-11-08T22:07:26Z) - Generation and structuring of multipartite entanglement in Josephson
parametric system [0.0]
vacuum state of a quantum field may act as a key element for the generation of multipartite quantum entanglement.
We achieve generation of genuine tripartite entangled state and its control by the use of the phase difference between two continuous pump tones.
Our scheme provides a comprehensive control toolbox for the entanglement structure and allows us to demonstrate, for first time to our knowledge, genuine quadripartite entanglement of microwave modes.
arXiv Detail & Related papers (2022-03-17T11:16:32Z) - Tailoring the degree of entanglement of two coherently coupled quantum
emitters [0.0]
Controlled molecular entanglement can serve as a test-bench to decipher more complex physical or biological mechanisms governed by the coherent coupling.
We implement hyperspectral imaging to identify pairs of coupled organic molecules trapped in a low temperature matrix.
We also demonstrate far-field selective excitation of the long-lived subradiant delocalized states with a laser field tailored in amplitude and phase.
arXiv Detail & Related papers (2021-09-22T08:30:59Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.