Spin-Dependent Transport Through a Colloidal Quantum Dot: The Role of
Exchange Interactions
- URL: http://arxiv.org/abs/2102.07778v1
- Date: Mon, 15 Feb 2021 19:00:00 GMT
- Title: Spin-Dependent Transport Through a Colloidal Quantum Dot: The Role of
Exchange Interactions
- Authors: John P. Philbin, Amikam Levy, Prineha Narang, and Wenjie Dou
- Abstract summary: We combine atomistic electronic structure calculations with quantum master equation methods to study the transport of electrons and holes through strongly confined quantum dots.
We find that a competition between the energy spacing between the two lowest quasiparticle energy levels determines the spin states of the lowest two quasiparticle energy levels.
The low density of electron states results in a spin singlet being the lowest energy two-electron state whereas, in contrast, the high density of states and significant exchange interaction results in a spin triplet being the lowest energy two-hole state.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The study of charge and spin transport through semiconductor quantum dots is
experiencing a renaissance due to recent advances in nano-fabrication and the
realization of quantum dots as candidates for quantum computing. In this work,
we combine atomistic electronic structure calculations with quantum master
equation methods to study the transport of electrons and holes through strongly
confined quantum dots coupled to two leads with a voltage bias. We find that a
competition between the energy spacing between the two lowest quasiparticle
energy levels and the strength of the exchange interaction determines the spin
states of the lowest two quasiparticle energy levels. Specifically, the low
density of electron states results in a spin singlet being the lowest energy
two-electron state whereas, in contrast, the high density of states and
significant exchange interaction results in a spin triplet being the lowest
energy two-hole state. The exchange interaction is also responsible for spin
blockades in transport properties, which could persist up to temperatures as
high as 77K for strongly confined colloidal quantum dots from our calculations.
Lastly, we relate these findings to the preparation and manipulation of singlet
and triplet spin qubit states in quantum dots using voltage biases.
Related papers
- Quantum phase transitions and cat states in cavity-coupled quantum dots [0.0]
We study double quantum dots coupled to a quasistatic cavity mode with high mode-volume compression.
electrons in different double quantum dots interact with each other via dipole-dipole (Coulomb) interaction.
We show that, in the strong coupling regime, both the ground and the first excited states of an array of double quantum dots are squeezed Schr"odinger cat states.
arXiv Detail & Related papers (2023-10-23T17:59:41Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Jellybean quantum dots in silicon for qubit coupling and on-chip quantum
chemistry [0.6818394664182874]
Small size and excellent integrability of silicon metal-oxide-semiconductor (SiMOS) quantum dot spin qubits make them an attractive system for mass-manufacturable, scaled-up quantum processors.
This paper investigates the charge and spin characteristics of an elongated quantum dot for the prospects of acting as a qubit-qubit coupler.
arXiv Detail & Related papers (2022-08-08T12:24:46Z) - Pauli Spin Blockade in a Resonant Triple Quantum Dot Molecule [0.0]
Pauli spin blockade in quantum dot systems occurs when the charge transport is allowed only for some spin states.
We theoretically investigate a Pauli spin blockade in a triple quantum dot molecule consisting of three identical quantum dots in a semiconductor.
arXiv Detail & Related papers (2021-12-29T19:52:27Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Precision tomography of a three-qubit donor quantum processor in silicon [38.42250061908039]
Nuclear spins were among the first physical platforms to be considered for quantum information processing.
We demonstrate universal quantum logic operations using a pair of ion-implanted 31P donor nuclei in a silicon nanoelectronic device.
arXiv Detail & Related papers (2021-06-06T10:30:38Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Spin shuttling in a silicon double quantum dot [0.0]
We study a minimal version of spin shuttling between two quantum dots.
Spin-orbit interaction and the Zeeman effect in an inhomogeneous magnetic field play an important role for spin shuttling.
We find that a spin infidelity as low as $1-F_slesssim 0.002$ with a relatively fast level velocity of $alpha = 600, mu$eV/ns is feasible.
arXiv Detail & Related papers (2020-07-07T16:33:06Z) - Quartet states in two-electron quantum dots in bilayer graphene [0.0]
We study single- and two-particle states in quantum dots formed in gapped bilayer graphene (BLG)
We analyse spin- and valley-singlet and triplet states for various BLG and dot parameters, as well as two-particle interaction strength and external magnetic field.
arXiv Detail & Related papers (2020-02-28T16:21:57Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.