論文の概要: Federated Over-Air Subspace Tracking from Incomplete and Corrupted Data
- arxiv url: http://arxiv.org/abs/2002.12873v4
- Date: Wed, 29 Jun 2022 21:50:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 02:14:21.081911
- Title: Federated Over-Air Subspace Tracking from Incomplete and Corrupted Data
- Title(参考訳): 不完全・崩壊データによる空域のフェデレーション追跡
- Authors: Praneeth Narayanamurthy, Namrata Vaswani, Aditya Ramamoorthy
- Abstract要約: 不足データ(ST-miss)と外れ値(Robust ST-miss)による部分空間追跡の問題点について検討する。
本稿では,新しいアルゴリズムを提案し,これら2つの問題に対する保証を提供する。
- 参考スコア(独自算出の注目度): 34.789079397190314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we study the problem of Subspace Tracking with missing data
(ST-miss) and outliers (Robust ST-miss). We propose a novel algorithm, and
provide a guarantee for both these problems. Unlike past work on this topic,
the current work does not impose the piecewise constant subspace change
assumption. Additionally, the proposed algorithm is much simpler (uses fewer
parameters) than our previous work. Secondly, we extend our approach and its
analysis to provably solving these problems when the data is federated and when
the over-air data communication modality is used for information exchange
between the $K$ peer nodes and the center. We validate our theoretical claims
with extensive numerical experiments.
- Abstract(参考訳): 本研究では,不足データ(ST-miss)と外れ値(Robust ST-miss)による部分空間追跡の問題について検討する。
我々は,新しいアルゴリズムを提案し,これらの問題に対する保証を提供する。
このトピックに関する過去の作業とは異なり、現在の作業では、断片的に定数な部分空間変化の仮定を課すことはない。
さらに、提案アルゴリズムは、これまでの研究よりもはるかに単純(パラメータが少ない)である。
第2に、データフェデレーションや、$k$のピアノードとセンター間の情報交換に over-air data communication modality が使用される場合に、これらの問題を解決するために、我々のアプローチと分析を拡張します。
理論的な主張を広範な数値実験で検証する。
関連論文リスト
- Simple Ingredients for Offline Reinforcement Learning [86.1988266277766]
オフライン強化学習アルゴリズムは、ターゲット下流タスクに高度に接続されたデータセットに有効であることが証明された。
既存の手法が多様なデータと競合することを示す。その性能は、関連するデータ収集によって著しく悪化するが、オフラインバッファに異なるタスクを追加するだけでよい。
アルゴリズム的な考慮以上のスケールが、パフォーマンスに影響を及ぼす重要な要因であることを示す。
論文 参考訳(メタデータ) (2024-03-19T18:57:53Z) - High-dimensional Contextual Bandit Problem without Sparsity [8.782204980889077]
本稿では,この問題に対処し,その性能を検証するための探索列コミット(EtC)アルゴリズムを提案する。
我々は、ETCアルゴリズムの最適レートを$T$で導出し、探索とエクスプロイトのバランスをとることで、このレートを実現できることを示す。
本稿では,最適バランスを適応的に求める適応探索定理 (AEtC) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-19T15:29:32Z) - Dimension-reduced KRnet maps for high-dimensional inverse problems [0.0]
高次元逆問題に対する次元還元KRnetマップアプローチ(DR-KRnet)を提案する。
提案手法は,データ駆動型VAE前駆体と潜伏変数後部密度近似の2つの主成分から構成される。
論文 参考訳(メタデータ) (2023-03-01T15:16:27Z) - On Differential Privacy and Adaptive Data Analysis with Bounded Space [76.10334958368618]
差分プライバシーと適応データ分析の2つの関連分野の空間複雑性について検討する。
差分プライバシーで効率的に解くために指数関数的に多くの空間を必要とする問題Pが存在することを示す。
アダプティブデータ分析の研究の行は、アダプティブクエリのシーケンスに応答するのに必要なサンプルの数を理解することに焦点を当てている。
論文 参考訳(メタデータ) (2023-02-11T14:45:31Z) - Competency Problems: On Finding and Removing Artifacts in Language Data [50.09608320112584]
複雑な言語理解タスクでは、すべての単純な特徴相関が突発的であると論じる。
人間バイアスを考慮したコンピテンシー問題に対するデータ作成の難しさを理論的に分析します。
論文 参考訳(メタデータ) (2021-04-17T21:34:10Z) - Anti-Aliasing Add-On for Deep Prior Seismic Data Interpolation [20.336981948463702]
問題に正則化項として方向ラプラシアンを加えることで,Deep Prior Inversionを改善することを提案する。
ノイズや破損したデータの存在下でも,この結果がエイリアスする傾向が低いことを示す。
論文 参考訳(メタデータ) (2021-01-27T12:46:58Z) - Privacy-Preserving Distributed Learning in the Analog Domain [23.67685616088422]
計算サーバからデータをプライベートに保ちながら、データよりも分散学習の問題を考察する。
本稿では,アナログ領域にデータが存在する場合の問題を解くための新しいアルゴリズムを提案する。
本研究では,浮動小数点数を用いてデータを表す場合の計算処理に,提案フレームワークをどのように適用できるかを示す。
論文 参考訳(メタデータ) (2020-07-17T07:56:39Z) - Representation Learning via Adversarially-Contrastive Optimal Transport [40.52344027750609]
我々はその問題をコントラスト表現学習の文脈に設定した。
本稿では,ワッサースタイン GAN と新しい分類器を結合するフレームワークを提案する。
我々の結果は、挑戦的なベースラインに対する競争力を示す。
論文 参考訳(メタデータ) (2020-07-11T19:46:18Z) - Byzantine-Robust Learning on Heterogeneous Datasets via Bucketing [55.012801269326594]
ビザンチンの堅牢な分散学習では、中央サーバは、複数のワーカーに分散したデータよりも、機械学習モデルを訓練したい。
これらの労働者のごく一部は、所定のアルゴリズムから逸脱し、任意のメッセージを送ることができる。
本稿では,既存のロバストなアルゴリズムを無視可能な計算コストでヘテロジニアスなデータセットに適応させる,シンプルなバケット方式を提案する。
論文 参考訳(メタデータ) (2020-06-16T17:58:53Z) - Learnable Subspace Clustering [76.2352740039615]
本研究では,大規模サブスペースクラスタリング問題を効率的に解くために,学習可能なサブスペースクラスタリングパラダイムを開発する。
鍵となる考え方は、高次元部分空間を下層の低次元部分空間に分割するパラメトリック関数を学ぶことである。
我々の知る限り、本論文は、サブスペースクラスタリング手法の中で、数百万のデータポイントを効率的にクラスタ化する最初の試みである。
論文 参考訳(メタデータ) (2020-04-09T12:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。