A Mechanistic Explanatory Strategy for XAI
- URL: http://arxiv.org/abs/2411.01332v1
- Date: Sat, 02 Nov 2024 18:30:32 GMT
- Title: A Mechanistic Explanatory Strategy for XAI
- Authors: Marcin Rabiza,
- Abstract summary: This paper outlines a mechanistic strategy for explaining the functional organization of deep learning systems.
According to the mechanistic approach, the explanation of opaque AI systems involves identifying mechanisms that drive decision-making.
This research suggests that a systematic approach to studying model organization can reveal elements that simpler (or ''more modest'') explainability techniques might miss.
- Score: 0.0
- License:
- Abstract: Despite significant advancements in XAI, scholars note a persistent lack of solid conceptual foundations and integration with broader scientific discourse on explanation. In response, emerging XAI research draws on explanatory strategies from various sciences and philosophy of science literature to fill these gaps. This paper outlines a mechanistic strategy for explaining the functional organization of deep learning systems, situating recent advancements in AI explainability within a broader philosophical context. According to the mechanistic approach, the explanation of opaque AI systems involves identifying mechanisms that drive decision-making. For deep neural networks, this means discerning functionally relevant components -- such as neurons, layers, circuits, or activation patterns -- and understanding their roles through decomposition, localization, and recomposition. Proof-of-principle case studies from image recognition and language modeling align these theoretical approaches with the latest research from AI labs like OpenAI and Anthropic. This research suggests that a systematic approach to studying model organization can reveal elements that simpler (or ''more modest'') explainability techniques might miss, fostering more thoroughly explainable AI. The paper concludes with a discussion on the epistemic relevance of the mechanistic approach positioned in the context of selected philosophical debates on XAI.
Related papers
- Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - Gradient based Feature Attribution in Explainable AI: A Technical Review [13.848675695545909]
Surge in black-box AI models has prompted the need to explain the internal mechanism and justify their reliability.
gradient based explanations can be directly adopted for neural network models.
We introduce both human and quantitative evaluations to measure algorithm performance.
arXiv Detail & Related papers (2024-03-15T15:49:31Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
Black-box machine learning approaches have become a dominant modeling paradigm for knowledge extraction in remote sensing.
We perform a systematic review to identify the key trends in the field and shed light on novel explainable AI approaches.
We also give a detailed outlook on the challenges and promising research directions.
arXiv Detail & Related papers (2024-02-21T13:19:58Z) - Emergent Explainability: Adding a causal chain to neural network
inference [0.0]
This position paper presents a theoretical framework for enhancing explainable artificial intelligence (xAI) through emergent communication (EmCom)
We explore the novel integration of EmCom into AI systems, offering a paradigm shift from conventional associative relationships between inputs and outputs to a more nuanced, causal interpretation.
The paper discusses the theoretical underpinnings of this approach, its potential broad applications, and its alignment with the growing need for responsible and transparent AI systems.
arXiv Detail & Related papers (2024-01-29T02:28:39Z) - A Theoretical Framework for AI Models Explainability with Application in
Biomedicine [3.5742391373143474]
We propose a novel definition of explanation that is a synthesis of what can be found in the literature.
We fit explanations into the properties of faithfulness (i.e., the explanation being a true description of the model's inner workings and decision-making process) and plausibility (i.e., how much the explanation looks convincing to the user)
arXiv Detail & Related papers (2022-12-29T20:05:26Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
We propose the use of hybrid AI methodology as a framework for combining the strengths of data-driven and knowledge-driven approaches.
Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks.
arXiv Detail & Related papers (2020-03-09T15:04:07Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z) - The Pragmatic Turn in Explainable Artificial Intelligence (XAI) [0.0]
I argue that the search for explainable models and interpretable decisions in AI must be reformulated in terms of the broader project of offering a pragmatic and naturalistic account of understanding in AI.
I conclude that interpretative or approximation models not only provide the best way to achieve the objectual understanding of a machine learning model, but are also a necessary condition to achieve post-hoc interpretability.
arXiv Detail & Related papers (2020-02-22T01:40:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.