Neighborhood Adaptive Estimators for Causal Inference under Network Interference
- URL: http://arxiv.org/abs/2212.03683v2
- Date: Tue, 04 Mar 2025 04:02:00 GMT
- Title: Neighborhood Adaptive Estimators for Causal Inference under Network Interference
- Authors: Alexandre Belloni, Fei Fang, Alexander Volfovsky,
- Abstract summary: We consider the violation of the classical no-interference assumption with units connected by a network.<n>For tractability, we consider a known network that describes how interference may spread.
- Score: 109.17155002599978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating causal effects has become an integral part of most applied fields. In this work we consider the violation of the classical no-interference assumption with units connected by a network. For tractability, we consider a known network that describes how interference may spread. Unlike previous work the radius (and intensity) of the interference experienced by a unit is unknown and can depend on different (local) sub-networks and the assigned treatments. We study estimators for the average direct treatment effect on the treated in such a setting under additive treatment effects. We establish rates of convergence and distributional results. The proposed estimators considers all possible radii for each (local) treatment assignment pattern. In contrast to previous work, we approximate the relevant network interference patterns that lead to good estimates of the interference. To handle feature engineering, a key innovation is to propose the use of synthetic treatments to decouple the dependence. We provide simulations, an empirical illustration and insights for the general study of interference.
Related papers
- Collaborative Value Function Estimation Under Model Mismatch: A Federated Temporal Difference Analysis [55.13545823385091]
Federated reinforcement learning (FedRL) enables collaborative learning while preserving data privacy by preventing direct data exchange between agents.
In real-world applications, each agent may experience slightly different transition dynamics, leading to inherent model mismatches.
We show that even moderate levels of information sharing can significantly mitigate environment-specific errors.
arXiv Detail & Related papers (2025-03-21T18:06:28Z) - Online Experimental Design With Estimation-Regret Trade-off Under Network Interference [7.080131271060764]
We introduce a unified interference-aware framework for online experimental design.
Compared to existing studies, we extend the definition of arm space by utilizing the statistical concept of exposure mapping.
We also propose an algorithmic implementation and discuss its generalization across different learning settings and network topology.
arXiv Detail & Related papers (2024-12-04T21:45:35Z) - Network Causal Effect Estimation In Graphical Models Of Contagion And Latent Confounding [2.654975444537834]
Key question in many network studies is whether the observed correlations between units are primarily due to contagion or latent confounding.
We propose network causal effect estimation strategies that provide unbiased and consistent estimates.
We evaluate the effectiveness of our methods with synthetic data and the validity of our assumptions using real-world networks.
arXiv Detail & Related papers (2024-11-02T22:12:44Z) - Higher-Order Causal Message Passing for Experimentation with Complex Interference [6.092214762701847]
We introduce a new class of estimators based on causal message-passing, specifically designed for settings with pervasive, unknown interference.
Our estimator draws on information from the sample mean and variance of unit outcomes and treatments over time, enabling efficient use of observed data.
arXiv Detail & Related papers (2024-11-01T18:00:51Z) - Estimating Direct and Indirect Causal Effects of Spatiotemporal Interventions in Presence of Spatial Interference [0.46052594866569146]
We first extend the concept of spatial interference in case of time-varying treatment outcomes by extending the potential outcome framework under the assumption of no unmeasured confounding.
We then propose our deep learning based potential outcome model fortemporal causal inference.
We utilize latent factor modeling to reduce interference due to time-varying confounding while leveraging the power of U-Net architecture to capture global spatial interference in data over time.
arXiv Detail & Related papers (2024-05-13T20:39:27Z) - Targeted Machine Learning for Average Causal Effect Estimation Using the
Front-Door Functional [3.0232957374216953]
evaluating the average causal effect (ACE) of a treatment on an outcome often involves overcoming the challenges posed by confounding factors in observational studies.
Here, we introduce novel estimation strategies for the front-door criterion based on the targeted minimum loss-based estimation theory.
We demonstrate the applicability of these estimators to analyze the effect of early stage academic performance on future yearly income.
arXiv Detail & Related papers (2023-12-15T22:04:53Z) - Causal Message Passing for Experiments with Unknown and General Network Interference [5.294604210205507]
We introduce a new framework to accommodate complex and unknown network interference.
Our framework, termed causal message-passing, is grounded in high-dimensional approximate message passing methodology.
We demonstrate the effectiveness of this approach across five numerical scenarios.
arXiv Detail & Related papers (2023-11-14T17:31:50Z) - Doubly Robust Proximal Causal Learning for Continuous Treatments [56.05592840537398]
We propose a kernel-based doubly robust causal learning estimator for continuous treatments.
We show that its oracle form is a consistent approximation of the influence function.
We then provide a comprehensive convergence analysis in terms of the mean square error.
arXiv Detail & Related papers (2023-09-22T12:18:53Z) - Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation [10.75801980090826]
We present three novel Bayesian methods to estimate the expectation of the ultimate treatment effect.
These methods differ on the source of uncertainty considered and allow for combining two sources of data.
We generalize these ideas to the off-policy evaluation framework.
arXiv Detail & Related papers (2022-11-02T23:39:36Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z) - Causal Inference Under Unmeasured Confounding With Negative Controls: A
Minimax Learning Approach [84.29777236590674]
We study the estimation of causal parameters when not all confounders are observed and instead negative controls are available.
Recent work has shown how these can enable identification and efficient estimation via two so-called bridge functions.
arXiv Detail & Related papers (2021-03-25T17:59:19Z) - Valid Causal Inference with (Some) Invalid Instruments [24.794879633855373]
We show how to perform consistent IV estimation despite violations of the exclusion assumption.
We achieve accurate estimates of conditional average treatment effects using an ensemble of deep network-based estimators.
arXiv Detail & Related papers (2020-06-19T21:09:26Z) - Interference and Generalization in Temporal Difference Learning [86.31598155056035]
We study the link between generalization and interference in temporal-difference (TD) learning.
We find that TD easily leads to low-interference, under-generalizing parameters, while the effect seems reversed in supervised learning.
arXiv Detail & Related papers (2020-03-13T15:49:58Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
We propose a matching method that recovers direct treatment effects from randomized experiments where units are connected in an observed network.
Our method matches units almost exactly on counts of unique subgraphs within their neighborhood graphs.
arXiv Detail & Related papers (2020-03-02T15:21:20Z) - Estimating the Effects of Continuous-valued Interventions using
Generative Adversarial Networks [103.14809802212535]
We build on the generative adversarial networks (GANs) framework to address the problem of estimating the effect of continuous-valued interventions.
Our model, SCIGAN, is flexible and capable of simultaneously estimating counterfactual outcomes for several different continuous interventions.
To address the challenges presented by shifting to continuous interventions, we propose a novel architecture for our discriminator.
arXiv Detail & Related papers (2020-02-27T18:46:21Z) - Causal Inference under Networked Interference and Intervention Policy
Enhancement [35.149125599812706]
Estimating individual treatment effects from data of randomized experiments is a critical task in causal inference.
Usually, in randomized experiments or observational studies with interconnected units, one can only observe treatment responses under interference.
We study causal effect estimation under general network interference using GNNs, which are powerful tools for capturing the dependency in the graph.
arXiv Detail & Related papers (2020-02-20T00:35:50Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.