論文の概要: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
- arxiv url: http://arxiv.org/abs/2003.01251v1
- Date: Mon, 2 Mar 2020 23:44:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2022-12-27 05:32:19.811210
- Title: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
- Title(参考訳): point-gnn:3次元物体検出のためのグラフニューラルネットワーク
- Authors: Weijing Shi and Ragunathan (Raj) Rajkumar
- Abstract要約: 本稿では,LiDAR点雲から物体を検出するグラフニューラルネットワークを提案する。
我々は、その点雲を近辺の固定半径グラフに効率よくエンコードする。
Point-GNNでは,翻訳のばらつきを低減する自動登録機構を提案する。
- 参考スコア(独自算出の注目度): 3.04585143845864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a graph neural network to detect objects from a
LiDAR point cloud. Towards this end, we encode the point cloud efficiently in a
fixed radius near-neighbors graph. We design a graph neural network, named
Point-GNN, to predict the category and shape of the object that each vertex in
the graph belongs to. In Point-GNN, we propose an auto-registration mechanism
to reduce translation variance, and also design a box merging and scoring
operation to combine detections from multiple vertices accurately. Our
experiments on the KITTI benchmark show the proposed approach achieves leading
accuracy using the point cloud alone and can even surpass fusion-based
algorithms. Our results demonstrate the potential of using the graph neural
network as a new approach for 3D object detection. The code is available
https://github.com/WeijingShi/Point-GNN.
- Abstract(参考訳): 本稿では,LiDAR点雲から物体を検出するグラフニューラルネットワークを提案する。
この目的に向けて、点雲を固定半径のneighborsグラフに効率的にエンコードする。
我々は、グラフの各頂点が属する対象のカテゴリと形状を予測するために、Point-GNNというグラフニューラルネットワークを設計する。
Point-GNNでは、翻訳のばらつきを低減する自動登録機構を提案し、また複数の頂点からの検出を正確に組み合わせるボックスマージとスコアリング操作を設計する。
KITTIベンチマーク実験により,提案手法は点雲のみを用いて先行精度を達成し,核融合に基づくアルゴリズムを超越できることを示した。
本研究は,3次元物体検出のための新しいアプローチとしてグラフニューラルネットワークを用いる可能性を示す。
コードはhttps://github.com/WeijingShi/Point-GNNで入手できる。
関連論文リスト
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - Learning task-specific features for 3D pointcloud graph creation [0.8629912408966145]
本稿では,3Dポイントクラウドからグラフを作成する方法を提案する。
提案手法は,入力された3Dポイントクラウドの変換上でk-NNを実行することに基づいている。
また, ストレス最小化に基づく正規化手法を導入し, ベースラインから学習グラフまでの距離を制御できるようにした: k-NN over xyz 空間。
論文 参考訳(メタデータ) (2022-09-02T11:13:02Z) - HPGNN: Using Hierarchical Graph Neural Networks for Outdoor Point Cloud
Processing [0.7649716717097428]
自律ナビゲーションのためのポイントクラウド処理の最近の改良により、我々は、処理に階層的なグラフニューラルネットワークを使うことに重点を置いている。
階層型グラフニューラルネットワーク(HPGNN)を提案する。
様々なレベルのグラフ粗さでノードの特徴を学習し、情報を抽出する。
これにより、既存のポイントレベルのグラフネットワークが達成に苦慮している詳細を保ちながら、大きなポイントクラウド上で学習することができる。
論文 参考訳(メタデータ) (2022-06-05T11:18:09Z) - Exploiting Local Geometry for Feature and Graph Construction for Better
3D Point Cloud Processing with Graph Neural Networks [22.936590869919865]
グラフニューラルネットワークの一般枠組みにおける点表現と局所近傍グラフ構築の改善を提案する。
提案されたネットワークは、トレーニングの収束を高速化する。
分類のための40%のより少ないエポック。
論文 参考訳(メタデータ) (2021-03-28T21:34:59Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
点雲完了は、部分的な観測から3次元形状の点集合表現を用いて完全な幾何学を予測するタスクである。
従来のアプローチでは、不完全点集合によって供給されるエンコーダ・デコーダモデルにより、点雲全体を直接推定するニューラルネットワークが提案されていた。
本稿では、欠落した幾何を計算し、既知の入力と予測点クラウドを融合することに焦点を当てたエンドツーエンドニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-10-08T22:01:23Z) - Dynamic Edge Weights in Graph Neural Networks for 3D Object Detection [0.0]
本稿では,LiDARスキャンにおける物体検出のためのグラフニューラルネットワーク(GNN)における注目に基づく特徴集約手法を提案する。
GNNの各層では、ノードごとの入力特徴を対応する上位特徴にマッピングする線形変換とは別に、ノードごとの注意を隠蔽する。
KITTIデータセットを用いた実験により,本手法は3次元物体検出に匹敵する結果が得られることが示された。
論文 参考訳(メタデータ) (2020-09-17T12:56:17Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNは強力だが、全点の雲を高密度の3Dグリッドに酸化した後、点データに直接畳み込みを適用するのは計算コストがかかる。
入力点のサブセットの小さな近傍を低解像度の3Dグリッドに独立してレンダリングする,新しい,原理化されたローカルグリッドレンダリング(LGR)演算を提案する。
ScanNetとSUN RGB-Dデータセットを用いた3次元オブジェクト検出のためのLGR-Netを検証する。
論文 参考訳(メタデータ) (2020-07-04T13:57:43Z) - SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection
from Point Clouds [8.906003527848636]
生のLIDARデータから同等の3D検出タスクを実現するために,Sparse Voxel-Graph Attention Network (SVGA-Net)を提案する。
SVGA-Netは、分割された3次元球面ボクセルと、すべてのボクセルを通してグローバルなKNNグラフ内の局所完備グラフを構成する。
KITTI検出ベンチマークの実験は、グラフ表現を3次元オブジェクト検出に拡張する効率を実証している。
論文 参考訳(メタデータ) (2020-06-07T05:01:06Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
本稿では、EdgeNetの概念を通じて、最先端グラフニューラルネットワーク(GNN)を統一する一般的なフレームワークを提案する。
EdgeNetはGNNアーキテクチャであり、異なるノードが異なるパラメータを使って異なる隣人の情報を測定することができる。
これは、ノードが実行でき、既存のグラフ畳み込みニューラルネットワーク(GCNN)とグラフアテンションネットワーク(GAT)の1つの定式化の下で包含できる一般的な線形で局所的な操作である。
論文 参考訳(メタデータ) (2020-01-21T15:51:17Z) - PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection [76.30585706811993]
我々はPointVoxel-RCNN(PV-RCNN)という新しい高性能な3Dオブジェクト検出フレームワークを提案する。
提案手法は3次元ボクセル畳み込みニューラルネットワーク(CNN)とPointNetベースの集合抽象化の両方を深く統合する。
3DボクセルCNNの効率的な学習と高品質な提案と、PointNetベースのネットワークのフレキシブル・レセプティブ・フィールドを利用する。
論文 参考訳(メタデータ) (2019-12-31T06:34:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。