Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
- URL: http://arxiv.org/abs/2003.01251v1
- Date: Mon, 2 Mar 2020 23:44:12 GMT
- Title: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
- Authors: Weijing Shi and Ragunathan (Raj) Rajkumar
- Abstract summary: We propose a graph neural network to detect objects from a LiDAR point cloud.
We encode the point cloud efficiently in a fixed radius near-neighbors graph.
In Point-GNN, we propose an auto-registration mechanism to reduce translation variance.
- Score: 3.04585143845864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a graph neural network to detect objects from a
LiDAR point cloud. Towards this end, we encode the point cloud efficiently in a
fixed radius near-neighbors graph. We design a graph neural network, named
Point-GNN, to predict the category and shape of the object that each vertex in
the graph belongs to. In Point-GNN, we propose an auto-registration mechanism
to reduce translation variance, and also design a box merging and scoring
operation to combine detections from multiple vertices accurately. Our
experiments on the KITTI benchmark show the proposed approach achieves leading
accuracy using the point cloud alone and can even surpass fusion-based
algorithms. Our results demonstrate the potential of using the graph neural
network as a new approach for 3D object detection. The code is available
https://github.com/WeijingShi/Point-GNN.
Related papers
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Learning task-specific features for 3D pointcloud graph creation [0.8629912408966145]
We propose a principled way of creating a graph from a 3D pointcloud.
Our method is based on performing k-NN over a transformation of the input 3D pointcloud.
We also introduce a regularization method based on stress minimization, which allows to control how distant is the learnt graph from our baseline: k-NN over xyz space.
arXiv Detail & Related papers (2022-09-02T11:13:02Z) - HPGNN: Using Hierarchical Graph Neural Networks for Outdoor Point Cloud
Processing [0.7649716717097428]
Motivated by recent improvements in point cloud processing for autonomous navigation, we focus on using hierarchical graph neural networks for processing.
We propose Hierarchical Point Graph Neural Network (HPGNN)
It learns node features at various levels of graph coarseness to extract information.
This enables to learn over a large point cloud while retaining fine details that existing point-level graph networks struggle to achieve.
arXiv Detail & Related papers (2022-06-05T11:18:09Z) - Exploiting Local Geometry for Feature and Graph Construction for Better
3D Point Cloud Processing with Graph Neural Networks [22.936590869919865]
We propose improvements in point representations and local neighborhood graph construction within the general framework of graph neural networks.
We show that the proposed network achieves faster training convergence, i.e. 40% less epochs for classification.
arXiv Detail & Related papers (2021-03-28T21:34:59Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
Point cloud completion is the task of predicting complete geometry from partial observations using a point set representation for a 3D shape.
Previous approaches propose neural networks to directly estimate the whole point cloud through encoder-decoder models fed by the incomplete point set.
This paper proposes an end-to-end neural network architecture that focuses on computing the missing geometry and merging the known input and the predicted point cloud.
arXiv Detail & Related papers (2020-10-08T22:01:23Z) - Dynamic Edge Weights in Graph Neural Networks for 3D Object Detection [0.0]
We propose an attention based feature aggregation technique in graph neural network (GNN) for detecting objects in LiDAR scan.
In each layer of the GNN, apart from the linear transformation which maps the per node input features to the corresponding higher level features, a per node masked attention is also performed.
The experiments on KITTI dataset show that our method yields comparable results for 3D object detection.
arXiv Detail & Related papers (2020-09-17T12:56:17Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNs are powerful but it would be computationally costly to directly apply convolutions on point data after voxelizing the entire point clouds to a dense regular 3D grid.
We propose a novel and principled Local Grid Rendering (LGR) operation to render the small neighborhood of a subset of input points into a low-resolution 3D grid independently.
We validate LGR-Net for 3D object detection on the challenging ScanNet and SUN RGB-D datasets.
arXiv Detail & Related papers (2020-07-04T13:57:43Z) - SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection
from Point Clouds [8.906003527848636]
We propose Sparse Voxel-Graph Attention Network (SVGA-Net) to achieve comparable 3D detection tasks from raw LIDAR data.
SVGA-Net constructs the local complete graph within each divided 3D spherical voxel and global KNN graph through all voxels.
Experiments on KITTI detection benchmark demonstrate the efficiency of extending the graph representation to 3D object detection.
arXiv Detail & Related papers (2020-06-07T05:01:06Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
This paper puts forth a general framework that unifies state-of-the-art graph neural networks (GNNs) through the concept of EdgeNet.
An EdgeNet is a GNN architecture that allows different nodes to use different parameters to weigh the information of different neighbors.
This is a general linear and local operation that a node can perform and encompasses under one formulation all existing graph convolutional neural networks (GCNNs) as well as graph attention networks (GATs)
arXiv Detail & Related papers (2020-01-21T15:51:17Z) - PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection [76.30585706811993]
We present a novel and high-performance 3D object detection framework, named PointVoxel-RCNN (PV-RCNN)
Our proposed method deeply integrates both 3D voxel Convolutional Neural Network (CNN) and PointNet-based set abstraction.
It takes advantages of efficient learning and high-quality proposals of the 3D voxel CNN and the flexible receptive fields of the PointNet-based networks.
arXiv Detail & Related papers (2019-12-31T06:34:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.