Self-Supervised Graph Representation Learning via Global Context
Prediction
- URL: http://arxiv.org/abs/2003.01604v1
- Date: Tue, 3 Mar 2020 15:46:01 GMT
- Title: Self-Supervised Graph Representation Learning via Global Context
Prediction
- Authors: Zhen Peng, Yixiang Dong, Minnan Luo, Xiao-Ming Wu, Qinghua Zheng
- Abstract summary: This paper introduces a novel self-supervised strategy for graph representation learning by exploiting natural supervision provided by the data itself.
We randomly select pairs of nodes in a graph and train a well-designed neural net to predict the contextual position of one node relative to the other.
Our underlying hypothesis is that the representations learned from such within-graph context would capture the global topology of the graph and finely characterize the similarity and differentiation between nodes.
- Score: 31.07584920486755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To take full advantage of fast-growing unlabeled networked data, this paper
introduces a novel self-supervised strategy for graph representation learning
by exploiting natural supervision provided by the data itself. Inspired by
human social behavior, we assume that the global context of each node is
composed of all nodes in the graph since two arbitrary entities in a connected
network could interact with each other via paths of varying length. Based on
this, we investigate whether the global context can be a source of free and
effective supervisory signals for learning useful node representations.
Specifically, we randomly select pairs of nodes in a graph and train a
well-designed neural net to predict the contextual position of one node
relative to the other. Our underlying hypothesis is that the representations
learned from such within-graph context would capture the global topology of the
graph and finely characterize the similarity and differentiation between nodes,
which is conducive to various downstream learning tasks. Extensive benchmark
experiments including node classification, clustering, and link prediction
demonstrate that our approach outperforms many state-of-the-art unsupervised
methods and sometimes even exceeds the performance of supervised counterparts.
Related papers
- Unveiling Global Interactive Patterns across Graphs: Towards Interpretable Graph Neural Networks [31.29616732552006]
Graph Neural Networks (GNNs) have emerged as a prominent framework for graph mining.
This paper proposes a novel intrinsically interpretable scheme for graph classification.
Global Interactive Pattern (GIP) learning introduces learnable global interactive patterns to explicitly interpret decisions.
arXiv Detail & Related papers (2024-07-02T06:31:13Z) - Federated Graph Semantic and Structural Learning [54.97668931176513]
This paper reveals that local client distortion is brought by both node-level semantics and graph-level structure.
We postulate that a well-structural graph neural network possesses similarity for neighbors due to the inherent adjacency relationships.
We transform the adjacency relationships into the similarity distribution and leverage the global model to distill the relation knowledge into the local model.
arXiv Detail & Related papers (2024-06-27T07:08:28Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Self-Supervised Node Representation Learning via Node-to-Neighbourhood
Alignment [10.879056662671802]
Self-supervised node representation learning aims to learn node representations from unlabelled graphs that rival the supervised counterparts.
In this work, we present simple-yet-effective self-supervised node representation learning via aligning the hidden representations of nodes and their neighbourhood.
We learn node representations that achieve promising node classification performance on a set of graph-structured datasets from small- to large-scale.
arXiv Detail & Related papers (2023-02-09T13:21:18Z) - STERLING: Synergistic Representation Learning on Bipartite Graphs [78.86064828220613]
A fundamental challenge of bipartite graph representation learning is how to extract node embeddings.
Most recent bipartite graph SSL methods are based on contrastive learning which learns embeddings by discriminating positive and negative node pairs.
We introduce a novel synergistic representation learning model (STERLING) to learn node embeddings without negative node pairs.
arXiv Detail & Related papers (2023-01-25T03:21:42Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - Self-supervised Consensus Representation Learning for Attributed Graph [15.729417511103602]
We introduce self-supervised learning mechanism to graph representation learning.
We propose a novel Self-supervised Consensus Representation Learning framework.
Our proposed SCRL method treats graph from two perspectives: topology graph and feature graph.
arXiv Detail & Related papers (2021-08-10T07:53:09Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - Spectral Embedding of Graph Networks [76.27138343125985]
We introduce an unsupervised graph embedding that trades off local node similarity and connectivity, and global structure.
The embedding is based on a generalized graph Laplacian, whose eigenvectors compactly capture both network structure and neighborhood proximity in a single representation.
arXiv Detail & Related papers (2020-09-30T04:59:10Z) - Graph InfoClust: Leveraging cluster-level node information for
unsupervised graph representation learning [12.592903558338444]
We propose a graph representation learning method called Graph InfoClust.
It seeks to additionally capture cluster-level information content.
This optimization leads the node representations to capture richer information and nodal interactions, which improves their quality.
arXiv Detail & Related papers (2020-09-15T09:33:20Z) - GraphCL: Contrastive Self-Supervised Learning of Graph Representations [20.439666392958284]
We propose Graph Contrastive Learning (GraphCL), a general framework for learning node representations in a self supervised manner.
We use graph neural networks to produce two representations of the same node and leverage a contrastive learning loss to maximize agreement between them.
In both transductive and inductive learning setups, we demonstrate that our approach significantly outperforms the state-of-the-art in unsupervised learning on a number of node classification benchmarks.
arXiv Detail & Related papers (2020-07-15T22:36:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.