論文の概要: Physics-informed machine learning for composition-process-property alloy
design: shape memory alloy demonstration
- arxiv url: http://arxiv.org/abs/2003.01878v3
- Date: Thu, 8 Oct 2020 22:42:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 12:40:22.521910
- Title: Physics-informed machine learning for composition-process-property alloy
design: shape memory alloy demonstration
- Title(参考訳): 組成-加工-プロパティ合金設計のための物理インフォーム機械学習:形状記憶合金デモ
- Authors: Sen Liu (1), Branden B. Kappes (1), Behnam Amin-ahmadi (1), Othmane
Benafan (2), Xiaoli Zhang (1), Aaron P. Stebner (1,3) ((1) Mechanical
Engineering, Colorado School of Mines, Golden (2) Materials and Structures
Division, NASA Glenn Research Center (3) Mechanical Engineering and Materials
Science and Engineering, Georgia Institute of Technology)
- Abstract要約: 機械学習(ML)は、高次元多目的設計空間において、新しい合金とその性能を予測する。
物理インフォームドされた特徴のあるエンジニアリングアプローチは、さもなくばパフォーマンスの悪いMLモデルを同じデータで正常に動作させることを可能にします。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) is shown to predict new alloys and their performances
in a high dimensional, multiple-target-property design space that considers
chemistry, multi-step processing routes, and characterization methodology
variations. A physics-informed featured engineering approach is shown to enable
otherwise poorly performing ML models to perform well with the same data.
Specifically, previously engineered elemental features based on alloy
chemistries are combined with newly engineered heat treatment process features.
The new features result from first transforming the heat treatment parameter
data as it was previously recorded using nonlinear mathematical relationships
known to describe the thermodynamics and kinetics of phase transformations in
alloys. The ability of the ML model to be used for predictive design is
validated using blind predictions. Composition - process - property
relationships for thermal hysteresis of shape memory alloys (SMAs) with complex
microstructures created via multiple
melting-homogenization-solutionization-precipitation processing stage
variations are captured, in addition to the mean transformation temperatures of
the SMAs. The quantitative models of hysteresis exhibited by such highly
processed alloys demonstrate the ability for ML models to design for physical
complexities that have challenged physics-based modeling approaches for
decades.
- Abstract(参考訳): 機械学習 (ml) は, 化学, マルチステップ処理経路, キャラクタリゼーション方法論のバリエーションを考慮した高次元多目的特性設計空間において, 新しい合金とその性能を予測する。
物理インフォームドされた特徴のあるエンジニアリングアプローチは、さもなくばパフォーマンスの悪いMLモデルを同じデータでうまく動作させることができる。
具体的には, 合金化学に基づく既成元素の特徴と, 新たな熱処理プロセスの特徴を組み合わせる。
新たな特徴は、熱処理パラメータデータが最初に変換され、合金の相変態の熱力学と速度論を記述するために知られている非線形数学的関係を用いて記録された。
予測設計に使用するMLモデルの能力は、ブラインド予測を用いて検証される。
組成 - プロセス - 形状記憶合金(SMA)の熱ヒステリシスと, 融解-均質化-溶解-析出過程の複合組織との物性関係を, SMAの平均変態温度に加えて捉えた。
このような高度処理された合金で示されるヒステリシスの量的モデルは、mlモデルが何十年も物理ベースのモデリングアプローチに挑戦してきた物理的複雑性のために設計する能力を示している。
関連論文リスト
- Interpolation and differentiation of alchemical degrees of freedom in machine learning interatomic potentials [1.1016723046079784]
原子性物質シミュレーションにおける連続的および微分可能なアルケミカル自由度の利用について報告する。
提案手法は,MLIPのメッセージパッシングおよび読み出し機構の変更とともに,対応する重みを持つアルケミカル原子を入力グラフに導入する。
MLIPのエンドツーエンドの微分可能性により、構成重みに対するエネルギー勾配の効率的な計算が可能となる。
論文 参考訳(メタデータ) (2024-04-16T17:24:22Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Electronic excited states from physically-constrained machine learning [0.0]
本稿では,実効ハミルトニアンの対称性適応MLモデルをトレーニングし,量子力学計算から電子励起を再現する統合モデリング手法を提案する。
結果として得られるモデルは、トレーニングされた分子よりもずっと大きく、より複雑な分子を予測できる。
論文 参考訳(メタデータ) (2023-11-01T20:49:59Z) - Supervised Machine Learning and Physics based Machine Learning approach
for prediction of peak temperature distribution in Additive Friction Stir
Deposition of Aluminium Alloy [0.0]
プロセスパラメータ, サーマルプロファイル, AFSD の相関関係はよく分かっていない。
この研究は、教師付き機械学習(ニューラルネットワーク)と物理情報ネットワーク(PINN)を組み合わせて、プロセスパラメータからAFSDのピーク温度分布を予測する。
論文 参考訳(メタデータ) (2023-09-13T09:39:42Z) - A hybrid machine learning framework for clad characteristics prediction
in metal additive manufacturing [0.0]
金属添加物製造(MAM)は大きな発展を遂げており、多くの注目を集めている。
MAMプロセスの複雑な性質から,MAMプリントクラッドの特性に対する処理パラメータの影響を予測することは困難である。
機械学習(ML)技術は、プロセスの基礎となる物理と処理パラメータをクラッド特性に結びつけるのに役立つ。
論文 参考訳(メタデータ) (2023-07-04T18:32:41Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
データ変換による任意のモデルE(3)-同変や不変化を実現するために,フレームアラグリング(SFA)に依存したフレキシブルなフレームワークを導入する。
本手法の有効性を理論的および実験的に証明し, 材料モデリングにおける精度と計算スケーラビリティを実証する。
論文 参考訳(メタデータ) (2023-04-28T21:48:31Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
本研究の目的は、代替燃料の物理的特性を予測するためのクロージャ方程式として機能する、安価で計算可能な機械学習モデルを構築することである。
これらのモデルは、MDシミュレーションのデータベースや、データ融合-忠実性アプローチによる実験的な測定を用いて訓練することができる。
その結果,MLモデルでは,広範囲の圧力および温度条件の燃料特性を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2021-10-18T14:43:50Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - A Supervised Machine Learning Approach for Accelerating the Design of
Particulate Composites: Application to Thermal Conductivity [0.0]
粒子状多機能複合材料の設計のための教師付き機械学習(ML)に基づく計算手法を提案する。
設計変数(英: design variables)は、材料のミクロ構造と材料の性質を直接リンクする物理的記述子である。
最適化ML法は, 生成データベース上で学習し, 構造と特性の複雑な関係を確立する。
論文 参考訳(メタデータ) (2020-09-30T18:18:00Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
本研究の目的は,レーザー加工が材料構造に及ぼす影響を自動予測することである。
その焦点は、統計的および機械学習の代表的なアルゴリズムのパフォーマンスに焦点を当てている。
結果は、材料設計、テスト、生産コストを削減するための体系的な方法論の基礎を設定することができる。
論文 参考訳(メタデータ) (2020-06-13T17:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。