論文の概要: Interpolation and differentiation of alchemical degrees of freedom in machine learning interatomic potentials
- arxiv url: http://arxiv.org/abs/2404.10746v2
- Date: Mon, 29 Apr 2024 17:21:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 22:36:34.206266
- Title: Interpolation and differentiation of alchemical degrees of freedom in machine learning interatomic potentials
- Title(参考訳): 機械学習の原子間ポテンシャルにおけるアルケミカル自由度の補間と微分
- Authors: Juno Nam, Rafael Gómez-Bombarelli,
- Abstract要約: 原子性物質シミュレーションにおける連続的および微分可能なアルケミカル自由度の利用について報告する。
提案手法は,MLIPのメッセージパッシングおよび読み出し機構の変更とともに,対応する重みを持つアルケミカル原子を入力グラフに導入する。
MLIPのエンドツーエンドの微分可能性により、構成重みに対するエネルギー勾配の効率的な計算が可能となる。
- 参考スコア(独自算出の注目度): 1.1016723046079784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning interatomic potentials (MLIPs) have become a workhorse of modern atomistic simulations, and recently published universal MLIPs, pre-trained on large datasets, have demonstrated remarkable accuracy and generalizability. However, the computational cost of MLIPs limits their applicability to chemically disordered systems requiring large simulation cells or to sample-intensive statistical methods. Here, we report the use of continuous and differentiable alchemical degrees of freedom in atomistic materials simulations, exploiting the fact that graph neural network MLIPs represent discrete elements as real-valued tensors. The proposed method introduces alchemical atoms with corresponding weights into the input graph, alongside modifications to the message-passing and readout mechanisms of MLIPs, and allows smooth interpolation between the compositional states of materials. The end-to-end differentiability of MLIPs enables efficient calculation of the gradient of energy with respect to the compositional weights. Leveraging these gradients, we propose methodologies for optimizing the composition of solid solutions towards target macroscopic properties and conducting alchemical free energy simulations to quantify the free energy of vacancy formation and composition changes. The approach offers an avenue for extending the capabilities of universal MLIPs in the modeling of compositional disorder and characterizing the phase stabilities of complex materials systems.
- Abstract(参考訳): 機械学習の原子間ポテンシャル(MLIP)は、現代の原子論シミュレーションの成果となり、最近、大規模なデータセットで事前訓練された普遍的なMLIPが、驚くほどの精度と一般化性を示している。
しかし、MLIPの計算コストは、大きなシミュレーションセルを必要とする化学的に乱れたシステムやサンプル集約的な統計手法に適用可能であることを制限している。
本稿では, グラフニューラルネットワークMLIPが離散要素を実数値テンソルとして表現するという事実を利用して, 原子論的材料シミュレーションにおける連続的かつ微分可能なアルケミカル自由度の利用を報告する。
提案手法では, MLIPのメッセージパッシング機構や読み出し機構の変更とともに, 入力グラフに対応する重みを持つアルケミカル原子を導入し, 材料の組成状態間のスムーズな補間を可能にする。
MLIPのエンドツーエンドの微分可能性により、構成重みに対するエネルギー勾配の効率的な計算が可能となる。
これらの勾配を利用して, 固体溶液の組成を目的のマクロ特性に最適化し, アルケミカル自由エネルギーシミュレーションを行い, 空孔形成と組成変化の自由エネルギーを定量化する手法を提案する。
このアプローチは、構成障害のモデリングにおける普遍的なMLIPの能力を拡張し、複雑な材料システムの位相安定性を特徴づける手段を提供する。
関連論文リスト
- A POD-TANN approach for the multiscale modeling of materials and macroelement derivation in geomechanics [0.0]
本稿では,多角形分解(POD)と熱力学に基づくニューラルネットワーク(TANN)を組み合わせることで,複雑な非弾性系のマクロ的挙動を捉える手法を提案する。
以上の結果から,POD-TANN手法は実験結果の精度を再現するだけでなく,計算コストを低減し,不均一な非弾性地盤力学系のマルチスケールモデリングの実用的なツールとなることが示唆された。
論文 参考訳(メタデータ) (2024-08-13T19:08:56Z) - Differentiable Neural-Integrated Meshfree Method for Forward and Inverse Modeling of Finite Strain Hyperelasticity [1.290382979353427]
本研究では,新しい物理インフォームド機械学習手法,特にニューラル積分メッシュフリー(NIM)法を拡張し,有限ひずみ問題をモデル化することを目的とする。
固有の微分可能プログラミング機能のおかげで、NIMは変分形式のニュートン・ラフソン線形化の導出を回避できる。
NIMはひずみデータから超弾性材料の不均一力学特性を同定し, 非線形材料の逆モデリングにおけるその有効性を検証する。
論文 参考訳(メタデータ) (2024-07-15T19:15:18Z) - Overcoming systematic softening in universal machine learning interatomic potentials by fine-tuning [3.321322648845526]
機械学習原子間ポテンシャル(MLIP)は原子シミュレーションの新しいパラダイムを導入した。
近年,多種多様な資料データセットで事前学習したユニバーサルMLIP(uMLIP)が出現している。
分布外の複雑な原子環境に対する外挿性能はいまだに不明である。
論文 参考訳(メタデータ) (2024-05-11T22:30:47Z) - Active learning of Boltzmann samplers and potential energies with quantum mechanical accuracy [1.7633275579210346]
我々は,強化サンプリングと深層生成モデルを組み合わせるアプローチと,機械学習ポテンシャルの能動的学習を併用したアプローチを開発する。
本手法を用いて, 医療・生物学分野における多種多様なシステム群に属する超小型の銀ナノクラスターの異性化について検討する。
論文 参考訳(メタデータ) (2024-01-29T19:01:31Z) - Electronic excited states from physically-constrained machine learning [0.0]
本稿では,実効ハミルトニアンの対称性適応MLモデルをトレーニングし,量子力学計算から電子励起を再現する統合モデリング手法を提案する。
結果として得られるモデルは、トレーニングされた分子よりもずっと大きく、より複雑な分子を予測できる。
論文 参考訳(メタデータ) (2023-11-01T20:49:59Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
本研究では,異なるシミュレーション手法をハイブリダイズし,インタラクション・ピクチャー・シミュレーションの性能を向上させるフレームワークを提案する。
これらのハイブリッド化手法の物理的応用は、電気遮断において$log2 Lambda$としてゲート複雑性のスケーリングをもたらす。
力学的な制約を受けるハミルトニアンシミュレーションの一般的な問題に対して、これらの手法は、エネルギーコストを課すために使われるペナルティパラメータ$lambda$とは無関係に、クエリの複雑さをもたらす。
論文 参考訳(メタデータ) (2021-09-07T20:01:22Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
本稿では、分子の全電子エネルギーと古典的コンピュータ上の特性を計算できる新しいハイブリッド古典的アルゴリズムを提案する。
本稿では,現在利用可能な量子コンピュータ上で,化学的に関連性のある結果と精度を実現する量子古典ハイブリッドアルゴリズムの能力を実証する。
論文 参考訳(メタデータ) (2021-06-22T18:00:00Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。