論文の概要: Optimal Regularization Can Mitigate Double Descent
- arxiv url: http://arxiv.org/abs/2003.01897v2
- Date: Thu, 29 Apr 2021 04:45:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 12:06:59.525333
- Title: Optimal Regularization Can Mitigate Double Descent
- Title(参考訳): 最適正則化は二重降下を緩和できる
- Authors: Preetum Nakkiran, Prayaag Venkat, Sham Kakade, Tengyu Ma
- Abstract要約: 最適正則化を用いて二重発振現象を回避できるかどうかを検討した。
我々は、最適に調整された$ell$正規化が、ニューラルネットワークを含むより一般的なモデルの2重降下を可能にすることを実証的に実証した。
- 参考スコア(独自算出の注目度): 29.414119906479954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent empirical and theoretical studies have shown that many learning
algorithms -- from linear regression to neural networks -- can have test
performance that is non-monotonic in quantities such the sample size and model
size. This striking phenomenon, often referred to as "double descent", has
raised questions of if we need to re-think our current understanding of
generalization. In this work, we study whether the double-descent phenomenon
can be avoided by using optimal regularization. Theoretically, we prove that
for certain linear regression models with isotropic data distribution,
optimally-tuned $\ell_2$ regularization achieves monotonic test performance as
we grow either the sample size or the model size. We also demonstrate
empirically that optimally-tuned $\ell_2$ regularization can mitigate double
descent for more general models, including neural networks. Our results suggest
that it may also be informative to study the test risk scalings of various
algorithms in the context of appropriately tuned regularization.
- Abstract(参考訳): 最近の経験的および理論的研究は、線形回帰からニューラルネットワークまで、多くの学習アルゴリズムがサンプルサイズやモデルサイズのような量で単調でないテスト性能を持つことを示した。
この顕著な現象は、しばしば「二重降下」と呼ばれ、一般化の現在の理解を再考する必要があるかどうかという疑問を提起している。
本研究では, 最適正則化を用いて, 二重発振現象を回避できるかどうかを考察する。
理論的には、等方性データ分布を持つある種の線形回帰モデルに対して、最適に調整された$\ell_2$正規化はサンプルサイズやモデルサイズが大きくなるにつれて単調な試験性能を達成する。
また、最適に調整された$\ell_2$正規化は、ニューラルネットワークを含むより一般的なモデルに対する二重降下を緩和できることを示す。
この結果から,正規化を適切に調整した状況下で,各種アルゴリズムのテストリスクスケーリングを検討することは有益である可能性が示唆された。
関連論文リスト
- Scaling and renormalization in high-dimensional regression [72.59731158970894]
本稿では,様々な高次元リッジ回帰モデルの訓練および一般化性能の簡潔な導出について述べる。
本稿では,物理と深層学習の背景を持つ読者を対象に,これらのトピックに関する最近の研究成果の紹介とレビューを行う。
論文 参考訳(メタデータ) (2024-05-01T15:59:00Z) - The Surprising Harmfulness of Benign Overfitting for Adversarial
Robustness [13.120373493503772]
根拠的真理そのものが敵の例に対して堅牢であるとしても、標準のアウト・オブ・サンプルのリスク目標の観点から見れば、明らかに過適合なモデルは良性である、という驚くべき結果が証明されます。
我々の発見は、実際に観察されたパズリング現象に関する理論的洞察を与え、真の標的関数(例えば、人間)は副次的攻撃に対して堅牢であり、一方、当初過適合のニューラルネットワークは、堅牢でないモデルに導かれる。
論文 参考訳(メタデータ) (2024-01-19T15:40:46Z) - Theoretical Characterization of the Generalization Performance of
Overfitted Meta-Learning [70.52689048213398]
本稿では,ガウス的特徴を持つ線形回帰モデルの下で,過剰適合型メタラーニングの性能について検討する。
シングルタスク線形回帰には存在しない新しい興味深い性質が見つかる。
本分析は,各訓練課題における基礎的真理のノイズや多様性・変動が大きい場合には,良心過剰がより重要かつ容易に観察できることを示唆する。
論文 参考訳(メタデータ) (2023-04-09T20:36:13Z) - Multi-scale Feature Learning Dynamics: Insights for Double Descent [71.91871020059857]
一般化誤差の「二重降下」現象について検討する。
二重降下は、異なるスケールで学習される異なる特徴に起因する可能性がある。
論文 参考訳(メタデータ) (2021-12-06T18:17:08Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
経験的に、よく調和された正規化スキームは、推論されたモデルの品質を劇的に改善する。
生成的ペアワイドグラフィカルモデルの最大Aポストエリオーリ(MAP)推論におけるL2とL1の正規化について検討する。
論文 参考訳(メタデータ) (2021-12-02T14:45:16Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
勾配降下(SGD)により最適化された高次元におけるランダム特徴(RF)回帰特性について検討する。
本研究では, RF回帰の高精度な非漸近誤差境界を, 定常および適応的なステップサイズSGD設定の下で導出する。
理論的にも経験的にも二重降下現象を観察する。
論文 参考訳(メタデータ) (2021-10-13T17:47:39Z) - Nonasymptotic theory for two-layer neural networks: Beyond the
bias-variance trade-off [10.182922771556742]
本稿では,ReLUアクティベーション機能を持つ2層ニューラルネットワークに対する漸近的一般化理論を提案する。
過度にパラメータ化されたランダムな特徴モデルは次元性の呪いに悩まされ、従って準最適であることを示す。
論文 参考訳(メタデータ) (2021-06-09T03:52:18Z) - Optimization Variance: Exploring Generalization Properties of DNNs [83.78477167211315]
ディープニューラルネットワーク(DNN)のテストエラーは、しばしば二重降下を示す。
そこで本研究では,モデル更新の多様性を測定するために,新しい測度である最適化分散(OV)を提案する。
論文 参考訳(メタデータ) (2021-06-03T09:34:17Z) - The Predictive Normalized Maximum Likelihood for Over-parameterized
Linear Regression with Norm Constraint: Regret and Double Descent [12.929639356256928]
現代の機械学習モデルは、予測規則の複雑さとその一般化能力の間のトレードオフに従わないことを示す。
最近提案された予測正規化最大値 (pNML) は、個々のデータに対するmin-max後悔解である。
我々は,pNML後悔を合成データ上でのポイントワイド学習可能性尺度として使用し,二重発生現象の予測に成功していることを示す。
論文 参考訳(メタデータ) (2021-02-14T15:49:04Z) - The Neural Tangent Kernel in High Dimensions: Triple Descent and a
Multi-Scale Theory of Generalization [34.235007566913396]
現代のディープラーニングモデルでは、トレーニングデータに適合するために必要なパラメータよりもはるかに多くのパラメータが採用されている。
この予期せぬ振る舞いを記述するための新たなパラダイムは、エンファンダブル降下曲線(英語版)である。
本稿では,勾配降下を伴う広帯域ニューラルネットワークの挙動を特徴付けるニューラル・タンジェント・カーネルを用いた一般化の高精度な高次元解析を行う。
論文 参考訳(メタデータ) (2020-08-15T20:55:40Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。