Spherical Principal Curves
- URL: http://arxiv.org/abs/2003.02578v3
- Date: Wed, 26 May 2021 07:11:41 GMT
- Title: Spherical Principal Curves
- Authors: Jang-Hyun Kim, Jongmin Lee, Hee-Seok Oh
- Abstract summary: We propose a new approach to construct principal curves on a sphere by a projection of the data onto a continuous curve.
Our approach lies in the same line of Hastie and Stuetzle (1989) that proposed principal curves for Euclidean space data.
- Score: 16.095213132052987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a new approach for dimension reduction of data observed
in a sphere. Several dimension reduction techniques have recently developed for
the analysis of non-Euclidean data. As a pioneer work, Hauberg (2016) attempted
to implement principal curves on Riemannian manifolds. However, this approach
uses approximations to deal with data on Riemannian manifolds, which causes
distorted results. In this study, we propose a new approach to construct
principal curves on a sphere by a projection of the data onto a continuous
curve. Our approach lies in the same line of Hastie and Stuetzle (1989) that
proposed principal curves for Euclidean space data. We further investigate the
stationarity of the proposed principal curves that satisfy the self-consistency
on a sphere. Results from real data analysis with earthquake data and
simulation examples demonstrate the promising empirical properties of the
proposed approach.
Related papers
- On Probabilistic Pullback Metrics on Latent Hyperbolic Manifolds [5.724027955589408]
This paper focuses on the hyperbolic manifold, a particularly suitable choice for modeling hierarchical relationships.
We propose augmenting the hyperbolic metric with a pullback metric to account for distortions introduced by theVM's nonlinear mapping.
Through various experiments, we demonstrate that geodesics on the pullback metric not only respect the geometry of the hyperbolic latent space but also align with the underlying data distribution.
arXiv Detail & Related papers (2024-10-28T09:13:00Z) - Score-based pullback Riemannian geometry [10.649159213723106]
We propose a framework for data-driven Riemannian geometry that is scalable in both geometry and learning.
We produce high-quality geodesics through the data support and reliably estimates the intrinsic dimension of the data manifold.
Our framework can naturally be used with anisotropic normalizing flows by adopting isometry regularization during training.
arXiv Detail & Related papers (2024-10-02T18:52:12Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
We investigate prediction sets for regression scenarios when the response variable, denoted by $Y$, resides in a manifold, and the covariable, denoted by X, lies in Euclidean space.
We prove the almost sure convergence of the empirical version of these regions on the manifold to their population counterparts.
arXiv Detail & Related papers (2023-10-12T10:56:25Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Short and Straight: Geodesics on Differentiable Manifolds [6.85316573653194]
In this work, we first analyse existing methods for computing length-minimising geodesics.
Second, we propose a model-based parameterisation for distance fields and geodesic flows on continuous manifold.
Third, we develop a curvature-based training mechanism, sampling and scaling points in regions of the manifold exhibiting larger values of the Ricci scalar.
arXiv Detail & Related papers (2023-05-24T15:09:41Z) - Riemannian Diffusion Schr\"odinger Bridge [56.20669989459281]
We introduce emphRiemannian Diffusion Schr"odinger Bridge to accelerate sampling of diffusion models.
We validate our proposed method on synthetic data and real Earth and climate data.
arXiv Detail & Related papers (2022-07-07T00:35:04Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
Most existing manifold learning algorithms replace the original data with lower dimensional coordinates.
This article proposes a new methodology for addressing these problems, allowing the estimated manifold between fitted data points.
arXiv Detail & Related papers (2021-10-14T15:50:38Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
offline reinforcement learning approaches can be divided into proximal and uncertainty-aware methods.
In this work, we demonstrate the benefit of combining the two in a latent variational model.
Our proposed metrics measure both the quality of out of distribution samples as well as the discrepancy of examples in the data.
arXiv Detail & Related papers (2021-02-22T19:42:40Z) - On the minmax regret for statistical manifolds: the role of curvature [68.8204255655161]
Two-part codes and the minimum description length have been successful in delivering procedures to single out the best models.
We derive a sharper expression than the standard one given by the complexity, where the scalar curvature of the Fisher information metric plays a dominant role.
arXiv Detail & Related papers (2020-07-06T17:28:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.