Suppression of Unwanted $ZZ$ Interactions in a Hybrid Two-Qubit System
- URL: http://arxiv.org/abs/2003.02775v2
- Date: Thu, 9 Apr 2020 15:22:42 GMT
- Title: Suppression of Unwanted $ZZ$ Interactions in a Hybrid Two-Qubit System
- Authors: Jaseung Ku, Xuexin Xu, Markus Brink, David C. McKay, Jared B.
Hertzberg, Mohammad H. Ansari, and B.L.T. Plourde
- Abstract summary: For weakly anharmonic superconducting qubits, unwanted $ZZ$ interactions can be suppressed by combining qubits with opposite anharmonicity.
We present experimental measurements and theoretical modeling of two-qubit gate error for gates based on the cross resonance interaction between a capacitively shunted flux qubit and a transmon.
- Score: 0.6784745592354214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mitigating crosstalk errors, whether classical or quantum mechanical, is
critically important for achieving high-fidelity entangling gates in
multi-qubit circuits. For weakly anharmonic superconducting qubits, unwanted
$ZZ$ interactions can be suppressed by combining qubits with opposite
anharmonicity. We present experimental measurements and theoretical modeling of
two-qubit gate error for gates based on the cross resonance interaction between
a capacitively shunted flux qubit and a transmon and demonstrate the
elimination of the $ZZ$ interaction.
Related papers
- On-demand transposition across light-matter interaction regimes in
bosonic cQED [69.65384453064829]
Bosonic cQED employs the light field of high-Q superconducting cavities coupled to non-linear circuit elements.
We present the first experiment to achieve fast switching of the interaction regime without deteriorating the cavity coherence.
Our work opens up a new paradigm to probe the full range of light-matter interaction dynamics within a single platform.
arXiv Detail & Related papers (2023-12-22T13:01:32Z) - Fast ZZ-Free Entangling Gates for Superconducting Qubits Assisted by a
Driven Resonator [42.152052307404]
We propose a simple scheme to cancel stray interactions between qubits.
We numerically show that such a scheme can enable short and high-fidelity entangling gates.
Our architecture is not only ZZ free but also contains no extra noisy components.
arXiv Detail & Related papers (2023-11-02T15:42:02Z) - Control the qubit-qubit coupling in the superconducting circuit with
double-resonator couplers [13.02901373376209]
We propose a scheme of using two fixed frequency resonator couplers to tune the coupling strength between two Xmon qubits.
The small direct qubit-quibt coupling could effectively suppress the frequency interval between switching off and switching on.
arXiv Detail & Related papers (2023-04-20T02:00:38Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Scalable Method for Eliminating Residual $ZZ$ Interaction between
Superconducting Qubits [14.178204625914194]
We show a practically approach for complete cancellation of residual $ZZ$ interaction between fixed-frequency transmon qubits.
We verify the cancellation performance by measuring vanishing two-qubit entangling phases and $ZZ$ correlations.
Our method allows independent addressability of each qubit-qubit connection, and is applicable to both nontunable and tunable couplers.
arXiv Detail & Related papers (2021-11-26T02:04:49Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Hardware-Efficient Microwave-Activated Tunable Coupling Between
Superconducting Qubits [0.0]
We realize a tunable $ZZ$ interaction between two transmon qubits with fixed frequencies and fixed coupling.
Because both transmons are driven, it is resilient to microwave crosstalk.
We apply this interaction to implement a controlled phase (CZ) gate with a gate fidelity of $99.43(1)%$ as measured by cycle benchmarking.
arXiv Detail & Related papers (2021-05-12T01:06:08Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z) - Error analysis in suppression of unwanted qubit interactions for a
parametric gate in a tunable superconducting circuit [0.0]
We experimentally demonstrate a parametric iSWAP gate in a superconducting circuit based on a tunable coupler.
We implement the twoqubit iSWAP gate by applying a fast-flux bias modulation pulse on the coupler to turn on parametric exchange interaction between computational qubits.
arXiv Detail & Related papers (2020-03-19T02:26:17Z) - High-contrast ZZ interaction using superconducting qubits with opposite-sign anharmonicity [15.172882153788267]
We introduce a superconducting architecture using qubits with opposite-sign anharmonicity, a transmon qubit and a C-shunt flux qubit.
We can control the interaction with a high on/off ratio to implement two-qubit CZ gates, or suppress it during two-qubit gate operation using XY interaction.
arXiv Detail & Related papers (2020-02-18T13:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.