論文の概要: Safe Mission Planning under Dynamical Uncertainties
- arxiv url: http://arxiv.org/abs/2003.02913v1
- Date: Thu, 5 Mar 2020 20:45:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 07:16:43.329381
- Title: Safe Mission Planning under Dynamical Uncertainties
- Title(参考訳): 動的不確実性を考慮した安全ミッション計画
- Authors: Yimeng Lu and Maryam Kamgarpour
- Abstract要約: 本稿では,不確実な動環境下での安全なロボットミッション計画について考察する。
動的不確実性のモデリングと統合が安全な計画フレームワークに組み込まれているため、これは難しい問題である。
- 参考スコア(独自算出の注目度): 15.533842336139063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers safe robot mission planning in uncertain dynamical
environments. This problem arises in applications such as surveillance,
emergency rescue, and autonomous driving. It is a challenging problem due to
modeling and integrating dynamical uncertainties into a safe planning
framework, and finding a solution in a computationally tractable way. In this
work, we first develop a probabilistic model for dynamical uncertainties. Then,
we provide a framework to generate a path that maximizes safety for complex
missions by incorporating the uncertainty model. We also devise a Monte Carlo
method to obtain a safe path efficiently. Finally, we evaluate the performance
of our approach and compare it to potential alternatives in several case
studies.
- Abstract(参考訳): 本稿では,不確定な動的環境における安全ロボットのミッション計画について考察する。
この問題は、監視、緊急救助、自動運転といった用途で発生する。
これは、動的不確かさを安全な計画フレームワークにモデリングし統合し、計算的に扱いやすい方法で解決策を見つけるため、難しい問題である。
本研究では,まず動的不確実性に対する確率モデルを構築した。
そして、不確実性モデルを導入して、複雑なミッションの安全性を最大化するパスを生成するためのフレームワークを提供する。
また,モンテカルロ法を考案し,安全な経路を効率的に得る。
最後に,本手法の性能評価を行い,いくつかのケーススタディにおいて潜在的選択肢と比較した。
関連論文リスト
- Monte Carlo Tree Search with Velocity Obstacles for safe and efficient motion planning in dynamic environments [49.30744329170107]
本稿では,動的障害物に関する情報を最小限に抑えた最適オンライン動作計画手法を提案する。
提案手法は,モデルシミュレーションによるオンライン最適計画のためのモンテカルロ木探索 (MCTS) と障害物回避のためのVelocity Obstacles (VO) を組み合わせた。
我々は,非線形モデル予測制御(NMPC)を含む最先端のプランナーに対して,衝突速度,計算,タスク性能の向上の観点から,我々の方法論の優位性を示す。
論文 参考訳(メタデータ) (2025-01-16T16:45:08Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Enhanced Safety in Autonomous Driving: Integrating Latent State Diffusion Model for End-to-End Navigation [5.928213664340974]
本研究は自動運転の制御最適化問題における安全性問題に対処する。
本稿では,条件付きバリュー・アット・リスクに基づくソフトアクター批判を利用して,ポリシー最適化のための新しいモデルベースアプローチを提案する。
本手法では, 安全探索を誘導する最悪のアクターを導入し, 予測不可能なシナリオにおいても, 安全要件の厳密な遵守を確保する。
論文 参考訳(メタデータ) (2024-07-08T18:32:40Z) - LaPlaSS: Latent Space Planning for Stochastic Systems [8.529245639496274]
本稿では,自律型移動エージェントのリスクバウンド計画に対する「ジェネレーテッド・アンド・テスト」アプローチを提案する。
我々は変分オートエンコーダを用いて潜在線形力学モデルを学習し、計画問題を潜在空間にエンコードして候補軌道を生成する。
我々のアルゴリズムであるLaPlaSSは、学習力学を持つ実世界のエージェントに対して有界リスクを持つ軌道計画を生成することができることを示した。
論文 参考訳(メタデータ) (2024-04-10T14:52:35Z) - Safeguarded Progress in Reinforcement Learning: Safe Bayesian
Exploration for Control Policy Synthesis [63.532413807686524]
本稿では、強化学習(RL)におけるトレーニング中の安全維持の問題に対処する。
探索中の効率的な進捗と安全性のトレードオフを扱う新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-12-18T16:09:43Z) - Safety-Critical Scenario Generation Via Reinforcement Learning Based
Editing [20.99962858782196]
本稿では,逐次編集による安全クリティカルなシナリオを生成する深層強化学習手法を提案する。
我々のフレームワークは、リスクと妥当性の両方の目的からなる報酬関数を用いています。
提案手法は, 従来手法と比較して, 品質の高い安全クリティカルなシナリオを生成することを示す。
論文 参考訳(メタデータ) (2023-06-25T05:15:25Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVEは、特定のプランナーが衝突のような望ましくない振る舞いを発生させるような、困難なシナリオを自動的に生成する手法である。
シナリオの妥当性を維持するために、キーとなるアイデアは、グラフベースの条件付きVAEという形で、学習した交通運動モデルを活用することである。
その後の最適化は、シナリオの"解決"を見つけるために使用され、与えられたプランナーを改善するのに有効である。
論文 参考訳(メタデータ) (2021-12-09T18:03:27Z) - Risk-Constrained Interactive Safety under Behavior Uncertainty for
Autonomous Driving [0.0]
許可された計画領域を制限する安全封筒は、行動の不確実性の存在下で解釈可能な安全性をもたらす。
人間は、安全封筒に違反する確率的リスクを受け入れることによって、密集した交通における安全と効率のバランスをとる。
論文 参考訳(メタデータ) (2021-02-05T08:33:39Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
学習に基づく制御アルゴリズムは、訓練のための豊富な監督を伴うデータ収集を必要とする。
本稿では,機会制約付き最適制御と動的学習とフィードバック制御を統合した安全な探索による最適動作計画のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-09T05:57:43Z) - Online Mapping and Motion Planning under Uncertainty for Safe Navigation
in Unknown Environments [3.2296078260106174]
本論文は,確率論的安全保証者によるオンラインで実現可能な動作のマッピングと計画のための不確実性に基づくフレームワークを提案する。
提案手法は, 環境の不確実性を意識した環境表現を構築するために周囲をマッピングし, (i) 信念空間の多層サンプリングベースプランナーを通して, キノダイナミックに実現可能で確率論的に安全な目標に反復的に(re)計画を行うことにより, 動き, 確率論的安全性, オンライン計算制約を取り扱う。
論文 参考訳(メタデータ) (2020-04-26T08:53:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。