論文の概要: Monte Carlo Tree Search with Velocity Obstacles for safe and efficient motion planning in dynamic environments
- arxiv url: http://arxiv.org/abs/2501.09649v1
- Date: Thu, 16 Jan 2025 16:45:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:09:33.979751
- Title: Monte Carlo Tree Search with Velocity Obstacles for safe and efficient motion planning in dynamic environments
- Title(参考訳): 動的環境における安全かつ効率的な運動計画のための速度障害物を用いたモンテカルロ木探索
- Authors: Lorenzo Bonanni, Daniele Meli, Alberto Castellini, Alessandro Farinelli,
- Abstract要約: 本稿では,動的障害物に関する情報を最小限に抑えた最適オンライン動作計画手法を提案する。
提案手法は,モデルシミュレーションによるオンライン最適計画のためのモンテカルロ木探索 (MCTS) と障害物回避のためのVelocity Obstacles (VO) を組み合わせた。
我々は,非線形モデル予測制御(NMPC)を含む最先端のプランナーに対して,衝突速度,計算,タスク性能の向上の観点から,我々の方法論の優位性を示す。
- 参考スコア(独自算出の注目度): 49.30744329170107
- License:
- Abstract: Online motion planning is a challenging problem for intelligent robots moving in dense environments with dynamic obstacles, e.g., crowds. In this work, we propose a novel approach for optimal and safe online motion planning with minimal information about dynamic obstacles. Specifically, our approach requires only the current position of the obstacles and their maximum speed, but it does not need any information about their exact trajectories or dynamic model. The proposed methodology combines Monte Carlo Tree Search (MCTS), for online optimal planning via model simulations, with Velocity Obstacles (VO), for obstacle avoidance. We perform experiments in a cluttered simulated environment with walls, and up to 40 dynamic obstacles moving with random velocities and directions. With an ablation study, we show the key contribution of VO in scaling up the efficiency of MCTS, selecting the safest and most rewarding actions in the tree of simulations. Moreover, we show the superiority of our methodology with respect to state-of-the-art planners, including Non-linear Model Predictive Control (NMPC), in terms of improved collision rate, computational and task performance.
- Abstract(参考訳): オンラインモーションプランニングは、例えば群衆のような動的な障害物のある密集した環境で動くインテリジェントロボットにとって難しい問題である。
本研究では,動的障害物に関する情報を最小限に抑えた最適かつ安全なオンライン動作計画手法を提案する。
具体的には, 障害物の現在の位置と最大速度のみを必要とするが, 正確な軌道や動的モデルに関する情報は不要である。
提案手法は,モデルシミュレーションによるオンライン最適計画のためのモンテカルロ木探索 (MCTS) と障害物回避のためのVelocity Obstacles (VO) を組み合わせた。
壁のある乱雑なシミュレーション環境で実験を行い、ランダムな速度と方向で最大40個の動的障害物を移動させる。
Ablation study, we show the key contribution of VO in scale up the MCTS, selecting the safe and most rewarding action in the tree of Simulations。
さらに,非線形モデル予測制御(NMPC)を含む最先端のプランナに対して,衝突速度,計算性能,タスク性能の向上の観点から,提案手法の優位性を示す。
関連論文リスト
- Towards Learning Scalable Agile Dynamic Motion Planning for Robosoccer Teams with Policy Optimization [0.0]
障害物の存在下でのマルチエージェントシステムの動的運動計画は普遍的で未解決な問題である。
本稿では,学習に基づく動的ナビゲーションモデルを提案し,シンプルなRobosoccer Gameの概念を用いて,シンプルな環境で動作するモデルを示す。
論文 参考訳(メタデータ) (2025-02-08T11:13:07Z) - Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models [57.45019514036948]
MRMP拡散(SMD)は、制約付き最適化を拡散サンプリングプロセスに統合し、運動学的に実現可能な軌道を生成する新しい手法である。
本稿では, ロボット密度, 障害物の複雑度, 動作制約の異なるシナリオ間の軌道計画アルゴリズムを評価するための総合的MRMPベンチマークを提案する。
論文 参考訳(メタデータ) (2025-02-05T20:51:28Z) - Dynamic Tube MPC: Learning Tube Dynamics with Massively Parallel Simulation for Robust Safety in Practice [28.37162791852146]
追跡不能なエラーは、安全を確保するために名目上の計画の堅牢化を必要とする。
本研究では,超並列シミュレーションを利用して動的チューブ表現を学習する手法を提案する。
結果のダイナミックMPCチューブは、3DホッピングロボットARCHERに適用される。
論文 参考訳(メタデータ) (2024-11-22T21:22:51Z) - A Safer Vision-based Autonomous Planning System for Quadrotor UAVs with
Dynamic Obstacle Trajectory Prediction and Its Application with LLMs [6.747468447244154]
本稿では,動的障害物の追跡と軌道予測を組み合わせて,効率的な自律飛行を実現するビジョンベース計画システムを提案する。
シミュレーション環境と実環境環境の両方で実験を行い,本研究の結果から動的環境の障害物をリアルタイムに検出・回避することが可能であることが示唆された。
論文 参考訳(メタデータ) (2023-11-21T08:09:00Z) - Learning-based Motion Planning in Dynamic Environments Using GNNs and
Temporal Encoding [15.58317292680615]
組込みとエッジ優先化ポリシの両方を学習するために,データアグリゲーションを用いた時間符号化と模倣学習を用いたGNNベースのアプローチを提案する。
実験により, 提案手法は, 最先端の完全な動的計画アルゴリズムよりも, オンラインプランニングを著しく高速化できることが示された。
論文 参考訳(メタデータ) (2022-10-16T01:27:16Z) - Motion Planning and Control for Multi Vehicle Autonomous Racing at High
Speeds [100.61456258283245]
本稿では,自律走行のための多層移動計画と制御アーキテクチャを提案する。
提案手法はダララのAV-21レースカーに適用され、楕円形のレーストラックで25$m/s2$まで加速試験された。
論文 参考訳(メタデータ) (2022-07-22T15:16:54Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
移動, 把握, 接触問題を同時に解くための効率的な運動計画フレームワークを提案する。
ハードウェア実験において提案手法を実証し, より短い計画時間で, 傾斜角45degで自由クライミングを含む様々な動作を実現できることを示す。
論文 参考訳(メタデータ) (2022-07-04T13:52:10Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
本稿では,リアル・ツー・シムの報酬分析手法を導入し,リアルなロボット・プラットフォームに対する行動の可能性を確実に予測する。
連続的なアクション空間でオブジェクトを反応的にプッシュするクローズドループコントローラを作成します。
我々は,RMPCが乱雑な環境だけでなく,乱雑な環境においても頑健であり,ベースラインよりも優れていることを観察した。
論文 参考訳(メタデータ) (2021-11-15T18:50:04Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - IA Planner: Motion Planning Using Instantaneous Analysis for Autonomous
Vehicle in the Dense Dynamic Scenarios on Highways [1.6791232288938656]
密集したダイナミックシーンでは、軌道計画の失敗や他の人による切り込みが容易である。
本稿では,衝突関係のみを同時に解析する瞬時解析モデルを提案する。
実験結果から, 本手法は, 高密度な動的シナリオにおいて, 安全快適かつ車線変化軌道を計画できることが示された。
論文 参考訳(メタデータ) (2021-03-19T17:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。