論文の概要: Exploiting Verified Neural Networks via Floating Point Numerical Error
- arxiv url: http://arxiv.org/abs/2003.03021v4
- Date: Fri, 1 Oct 2021 14:10:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 01:02:31.990799
- Title: Exploiting Verified Neural Networks via Floating Point Numerical Error
- Title(参考訳): 浮動小数点数値誤差による検証ニューラルネットワークの活用
- Authors: Kai Jia, Martin Rinard
- Abstract要約: 検証者は、ニューラルネットワークが空間内のすべての入力に対して特定の特性を保証するかどうかに答えようとしている。
浮動小数点誤差の無視は、実際に体系的に活用できる不健全な検証につながることを示す。
- 参考スコア(独自算出の注目度): 15.639601066641099
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Researchers have developed neural network verification algorithms motivated
by the need to characterize the robustness of deep neural networks. The
verifiers aspire to answer whether a neural network guarantees certain
properties with respect to all inputs in a space. However, many verifiers
inaccurately model floating point arithmetic but do not thoroughly discuss the
consequences.
We show that the negligence of floating point error leads to unsound
verification that can be systematically exploited in practice. For a pretrained
neural network, we present a method that efficiently searches inputs as
witnesses for the incorrectness of robustness claims made by a complete
verifier. We also present a method to construct neural network architectures
and weights that induce wrong results of an incomplete verifier. Our results
highlight that, to achieve practically reliable verification of neural
networks, any verification system must accurately (or conservatively) model the
effects of any floating point computations in the network inference or
verification system.
- Abstract(参考訳): 研究者たちは、ディープニューラルネットワークの堅牢性を特徴づける必要性から、ニューラルネットワーク検証アルゴリズムを開発した。
検証者は、ニューラルネットワークが空間内の全ての入力に対して特定の特性を保証するかどうかに答えようとする。
しかし、多くの検証者は浮動小数点演算を不正確にモデル化しているが、結果について十分に議論していない。
浮動小数点誤差の無視は,実際にシステム的に悪用できる不健全な検証につながることを示す。
事前学習されたニューラルネットワークに対して,完全検証器によるロバスト性クレームの誤認の証人として入力を効率的に検索する手法を提案する。
また,不完全検証者の誤った結果を引き起こすニューラルネットワークアーキテクチャと重み付けを構築する手法を提案する。
この結果から,ニューラルネットワークの信頼性の高い検証を実現するためには,ネットワーク推論や検証システムにおける浮動小数点演算の効果を正確に(あるいは保守的に)モデル化する必要がある。
関連論文リスト
- Verified Neural Compressed Sensing [58.98637799432153]
精度の高い計算タスクのために、初めて(私たちの知識を最大限に活用するために)証明可能なニューラルネットワークを開発します。
極小問題次元(最大50)では、線形および双項線形測定からスパースベクトルを確実に回復するニューラルネットワークを訓練できることを示す。
ネットワークの複雑さは問題の難易度に適応できることを示し、従来の圧縮センシング手法が証明不可能な問題を解く。
論文 参考訳(メタデータ) (2024-05-07T12:20:12Z) - Fully Automatic Neural Network Reduction for Formal Verification [8.017543518311196]
到達可能性解析を用いたニューラルネットワークの完全自動・音量低減手法を提案する。
音質は、低減されたネットワークの検証が元のネットワークの検証を必要とすることを保証します。
提案手法は, ニューロンの数を, 小さい外近似で, 元のニューロン数のごく一部に減らすことができることを示す。
論文 参考訳(メタデータ) (2023-05-03T07:13:47Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - Consistency of Neural Networks with Regularization [0.0]
本稿では,ニューラルネットワークの規則化による一般的な枠組みを提案し,その一貫性を実証する。
双曲関数(Tanh)と整形線形単位(ReLU)の2種類の活性化関数が検討されている。
論文 参考訳(メタデータ) (2022-06-22T23:33:39Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
ニューラルネット・プルーニングはディープ・ニューラル・ネットワーク(NN)の実証的ロバスト性を向上させることができることを示す。
実験の結果,NNを適切に刈り取ることで,その精度を8.2%まで向上させることができることがわかった。
さらに,認証された宝くじの存在が,従来の密集モデルの標準および認証された堅牢な精度に一致することを観察する。
論文 参考訳(メタデータ) (2022-06-15T05:48:51Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
目的関数の幾何学的構造を解析することにより、刈り取られたニューラルネットワークを訓練する性能を解析する。
本稿では,ニューラルネットワークモデルがプルーニングされるにつれて,一般化が保証された望ましいモデル近傍の凸領域が大きくなることを示す。
論文 参考訳(メタデータ) (2021-10-12T01:11:07Z) - Verifying Low-dimensional Input Neural Networks via Input Quantization [12.42030531015912]
本稿では,ACAS Xu ネットワーク検証の当初の問題を再考する。
本稿では,入力量子化層をネットワークにプリペイドすることを提案する。
本手法は,浮動小数点誤差に耐性のない正確な検証結果を提供する。
論文 参考訳(メタデータ) (2021-08-18T03:42:05Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Generate and Verify: Semantically Meaningful Formal Analysis of Neural
Network Perception Systems [2.2559617939136505]
ニューラルネットワーク認識システムの精度を評価するためにテストが続けられている。
我々は、モデルが常に基底真理に結びついたある誤差内で推定を生成することを証明するために、ニューラルネットワークの検証を用いる。
論文 参考訳(メタデータ) (2020-12-16T23:09:53Z) - Scalable Verification of Quantized Neural Networks (Technical Report) [14.04927063847749]
ビットベクトル仕様を持つ量子化ニューラルネットワークのビットエクササイズ実装はPSPACEハードであることを示す。
量子化されたニューラルネットワークのSMTに基づく検証をよりスケーラブルにするための3つの手法を提案する。
論文 参考訳(メタデータ) (2020-12-15T10:05:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。