論文の概要: Predicting Stock Returns with Batched AROW
- arxiv url: http://arxiv.org/abs/2003.03076v2
- Date: Fri, 20 Mar 2020 07:55:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 01:37:21.860089
- Title: Predicting Stock Returns with Batched AROW
- Title(参考訳): バッチAROWによる株価回復予測
- Authors: Rachid Guennouni Hassani (X), Alexis Gilles, Emmanuel Lassalle, Arthur
D\'enouveaux
- Abstract要約: 本稿では,Vaits と Crammer が[VC11] で開発した AROW 回帰アルゴリズムを拡張し,同期型ミニバッチ更新を処理し,ストックリターン予測に適用する。
我々は、S&P500株の戦略をバックテストすることで、新しいモデルがより古典的なアプローチを上回ることを実証的に示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We extend the AROW regression algorithm developed by Vaits and Crammer in
[VC11] to handle synchronous mini-batch updates and apply it to stock return
prediction. By design, the model should be more robust to noise and adapt
better to non-stationarity compared to a simple rolling regression. We
empirically show that the new model outperforms more classical approaches by
backtesting a strategy on S\&P500 stocks.
- Abstract(参考訳): 我々は,[vc11] において vaits と crammer が開発した arow 回帰アルゴリズムを拡張し,同期的ミニバッチ更新を処理し,株価リターン予測に適用する。
設計上、モデルはノイズに対してより頑健で、単純な転がり回帰よりも非定常性に適応すべきである。
われわれはこの新モデルがS\&P500株の戦略をバックテストすることで、より古典的なアプローチを上回ることを実証的に示す。
関連論文リスト
- Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - Regression-aware Inference with LLMs [52.764328080398805]
提案手法は,一般的な回帰と評価指標に準最適であることを示す。
本稿では,ベイズ最適解を推定し,サンプル応答からクローズド形式の評価指標を推定する代替推論手法を提案する。
論文 参考訳(メタデータ) (2024-03-07T03:24:34Z) - Consensus-Adaptive RANSAC [104.87576373187426]
本稿では,パラメータ空間の探索を学習する新しいRANSACフレームワークを提案する。
注意機構は、ポイント・ツー・モデル残差のバッチで動作し、軽量のワンステップ・トランスフォーマーで見いだされたコンセンサスを考慮するために、ポイント・ツー・モデル推定状態を更新する。
論文 参考訳(メタデータ) (2023-07-26T08:25:46Z) - Improving Prediction Backward-Compatiblility in NLP Model Upgrade with
Gated Fusion [8.173078054056337]
ニューラルモデルを新しいバージョンにアップグレードする場合、レガシバージョンで遭遇しなかった新しいエラーを、レグレッションエラー(regress error)として導入することができる。
従来のモデルと新しいモデルの間で予測を混合する学習による後方互換性を促進する新しい手法であるGated Fusionを提案する。
論文 参考訳(メタデータ) (2023-02-04T03:40:35Z) - ResMem: Learn what you can and memorize the rest [79.19649788662511]
本稿では,既存の予測モデルを拡張するための残差記憶アルゴリズム(ResMem)を提案する。
構築によって、ResMemはトレーニングラベルを明示的に記憶することができる。
ResMemは、元の予測モデルのテストセットの一般化を一貫して改善することを示す。
論文 参考訳(メタデータ) (2023-02-03T07:12:55Z) - Empirical Asset Pricing via Ensemble Gaussian Process Regression [4.111899441919165]
我々のアンサンブル学習アプローチは、GPR推論に固有の計算複雑性を著しく減少させる。
本手法は,統計的,経済的に既存の機械学習モデルを支配している。
これは不確実な投資家にアピールし、S&P500を上回る等級と重み付けの予測対象ポートフォリオを圧倒的に上回っている。
論文 参考訳(メタデータ) (2022-12-02T09:37:29Z) - Deep Inventory Management [3.578617477295742]
本稿では,定期的な在庫管理システムを実現するための深層強化学習手法を提案する。
いくつかのポリシー学習アプローチが古典的ベースラインアプローチと競合するか、あるいは競争的であることを示す。
論文 参考訳(メタデータ) (2022-10-06T18:00:25Z) - Differentially Private Regression with Unbounded Covariates [19.646866014320608]
我々は,Last Squares Fitting,Binary Regression,Linear Regressionの古典的回帰設定に対して,差分プライベートなアルゴリズムを提供する。
我々は、ロジスティック回帰と線形分離可能なSVMの基本モデルと広く研究されているモデルを捉え、真の回帰ベクトルの偏りのない推定を学習する。
論文 参考訳(メタデータ) (2022-02-19T17:31:38Z) - Measuring and Reducing Model Update Regression in Structured Prediction
for NLP [31.86240946966003]
後方互換性は、新しいモデルが前者によって正しく処理されたケースに回帰しないことを要求する。
本研究は、構造化予測タスクにおける更新回帰をモデル化する。
本稿では,構造化出力の特性を考慮し,単純かつ効果的なバックワード・コングルエント・リグレード(BCR)を提案する。
論文 参考訳(メタデータ) (2022-02-07T07:04:54Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
この研究は、NLPモデル更新における回帰エラーの定量化、低減、分析に重点を置いている。
回帰フリーモデル更新を制約付き最適化問題に定式化する。
モデルアンサンブルが回帰を減らす方法を実証的に分析します。
論文 参考訳(メタデータ) (2021-05-07T03:33:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。