Scalable Cross Validation Losses for Gaussian Process Models
- URL: http://arxiv.org/abs/2105.11535v1
- Date: Mon, 24 May 2021 21:01:47 GMT
- Title: Scalable Cross Validation Losses for Gaussian Process Models
- Authors: Martin Jankowiak, Geoff Pleiss
- Abstract summary: We use Polya-Gamma auxiliary variables and variational inference to accommodate binary and multi-class classification.
We find that our method offers fast training and excellent predictive performance.
- Score: 22.204619587725208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a simple and scalable method for training Gaussian process (GP)
models that exploits cross-validation and nearest neighbor truncation. To
accommodate binary and multi-class classification we leverage P\`olya-Gamma
auxiliary variables and variational inference. In an extensive empirical
comparison with a number of alternative methods for scalable GP regression and
classification, we find that our method offers fast training and excellent
predictive performance. We argue that the good predictive performance can be
traced to the non-parametric nature of the resulting predictive distributions
as well as to the cross-validation loss, which provides robustness against
model mis-specification.
Related papers
- Likelihood approximations via Gaussian approximate inference [3.4991031406102238]
We propose efficient schemes to approximate the effects of non-Gaussian likelihoods by Gaussian densities.
Our results attain good approximation quality for binary and multiclass classification in large-scale point-estimate and distributional inferential settings.
As a by-product, we show that the proposed approximate log-likelihoods are a superior alternative to least-squares on raw labels for neural network classification.
arXiv Detail & Related papers (2024-10-28T05:39:26Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - A Heavy-Tailed Algebra for Probabilistic Programming [53.32246823168763]
We propose a systematic approach for analyzing the tails of random variables.
We show how this approach can be used during the static analysis (before drawing samples) pass of a probabilistic programming language compiler.
Our empirical results confirm that inference algorithms that leverage our heavy-tailed algebra attain superior performance across a number of density modeling and variational inference tasks.
arXiv Detail & Related papers (2023-06-15T16:37:36Z) - Adaptive Dimension Reduction and Variational Inference for Transductive
Few-Shot Classification [2.922007656878633]
We propose a new clustering method based on Variational Bayesian inference, further improved by Adaptive Dimension Reduction.
Our proposed method significantly improves accuracy in the realistic unbalanced transductive setting on various Few-Shot benchmarks.
arXiv Detail & Related papers (2022-09-18T10:29:02Z) - Last Layer Marginal Likelihood for Invariance Learning [12.00078928875924]
We introduce a new lower bound to the marginal likelihood, which allows us to perform inference for a larger class of likelihood functions.
We work towards bringing this approach to neural networks by using an architecture with a Gaussian process in the last layer.
arXiv Detail & Related papers (2021-06-14T15:40:51Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z) - Sparse Gaussian Processes Revisited: Bayesian Approaches to
Inducing-Variable Approximations [27.43948386608]
Variational inference techniques based on inducing variables provide an elegant framework for scalable estimation in Gaussian process (GP) models.
In this work we challenge the common wisdom that optimizing the inducing inputs in variational framework yields optimal performance.
arXiv Detail & Related papers (2020-03-06T08:53:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.