Amortized Variational Inference for Deep Gaussian Processes
- URL: http://arxiv.org/abs/2409.12301v1
- Date: Wed, 18 Sep 2024 20:23:27 GMT
- Title: Amortized Variational Inference for Deep Gaussian Processes
- Authors: Qiuxian Meng, Yongyou Zhang,
- Abstract summary: Deep Gaussian processes (DGPs) are multilayer generalizations of Gaussian processes (GPs)
We introduce amortized variational inference for DGPs, which learns an inference function that maps each observation to variational parameters.
Our method performs similarly or better than previous approaches at less computational cost.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian processes (GPs) are Bayesian nonparametric models for function approximation with principled predictive uncertainty estimates. Deep Gaussian processes (DGPs) are multilayer generalizations of GPs that can represent complex marginal densities as well as complex mappings. As exact inference is either computationally prohibitive or analytically intractable in GPs and extensions thereof, some existing methods resort to variational inference (VI) techniques for tractable approximations. However, the expressivity of conventional approximate GP models critically relies on independent inducing variables that might not be informative enough for some problems. In this work we introduce amortized variational inference for DGPs, which learns an inference function that maps each observation to variational parameters. The resulting method enjoys a more expressive prior conditioned on fewer input dependent inducing variables and a flexible amortized marginal posterior that is able to model more complicated functions. We show with theoretical reasoning and experimental results that our method performs similarly or better than previous approaches at less computational cost.
Related papers
- Polynomial Chaos Expanded Gaussian Process [2.287415292857564]
In complex and unknown processes, global models are initially generated over the entire experimental space.
This study addresses the need for models that effectively represent both global and local experimental spaces.
arXiv Detail & Related papers (2024-05-02T07:11:05Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGMs) have been widely adopted for continuous control tasks in robotics and computer graphics.
Recent studies have revealed that, when applied to long-term reinforcement learning problems, model-based RP PGMs may experience chaotic and non-smooth optimization landscapes.
We propose a spectral normalization method to mitigate the exploding variance issue caused by long model unrolls.
arXiv Detail & Related papers (2023-10-30T18:43:21Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
arXiv Detail & Related papers (2023-08-29T15:01:01Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
Gaussian processes scale prohibitively with the size of the dataset.
Many approximation methods have been developed, which inevitably introduce approximation error.
This additional source of uncertainty, due to limited computation, is entirely ignored when using the approximate posterior.
We develop a new class of methods that provides consistent estimation of the combined uncertainty arising from both the finite number of data observed and the finite amount of computation expended.
arXiv Detail & Related papers (2022-05-30T22:16:25Z) - Scalable mixed-domain Gaussian process modeling and model reduction for longitudinal data [5.00301731167245]
We derive a basis function approximation scheme for mixed-domain covariance functions.
We show that we can approximate the exact GP model accurately in a fraction of the runtime.
We also demonstrate a scalable model reduction workflow for obtaining smaller and more interpretable models.
arXiv Detail & Related papers (2021-11-03T04:47:37Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - On MCMC for variationally sparse Gaussian processes: A pseudo-marginal
approach [0.76146285961466]
Gaussian processes (GPs) are frequently used in machine learning and statistics to construct powerful models.
We propose a pseudo-marginal (PM) scheme that offers exact inference as well as computational gains through doubly estimators for the likelihood and large datasets.
arXiv Detail & Related papers (2021-03-04T20:48:29Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z) - Deep Sigma Point Processes [22.5396672566053]
We introduce a class of parametric models inspired by the compositional structure of Deep Gaussian Processes (DGPs)
Deep Sigma Point Processes (DSPPs) retain many of the attractive features of (variational) DGPs, including mini-batch training and predictive uncertainty that is controlled by kernel basis functions.
arXiv Detail & Related papers (2020-02-21T03:40:35Z) - Transport Gaussian Processes for Regression [0.22843885788439797]
We propose a methodology to construct processes, which include GPs, warped GPs, Student-t processes and several others.
Our approach is inspired by layers-based models, where each proposed layer changes a specific property over the generated process.
We validate the proposed model through experiments with real-world data.
arXiv Detail & Related papers (2020-01-30T17:44:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.