論文の概要: Learning the Designer's Preferences to Drive Evolution
- arxiv url: http://arxiv.org/abs/2003.03268v1
- Date: Fri, 6 Mar 2020 15:10:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 00:25:37.281568
- Title: Learning the Designer's Preferences to Drive Evolution
- Title(参考訳): 進化を駆動するデザイナーの選好を学ぶ
- Authors: Alberto Alvarez and Jose Font
- Abstract要約: 本稿では,ユーザ生成データから学習するデータ駆動型ソリューションについて,Quality-Diversity Mixed-Initiative Co-Creativityツールで紹介する。
我々は,ユーザとツールの相互刺激ループを中断したり,定期的に提案するハンピックでユーザを疲労させるような方法で,生成されたコンテンツに対してユーザのエージェンシーを増大させることを目標としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents the Designer Preference Model, a data-driven solution
that pursues to learn from user generated data in a Quality-Diversity
Mixed-Initiative Co-Creativity (QD MI-CC) tool, with the aims of modelling the
user's design style to better assess the tool's procedurally generated content
with respect to that user's preferences. Through this approach, we aim for
increasing the user's agency over the generated content in a way that neither
stalls the user-tool reciprocal stimuli loop nor fatigues the user with
periodical suggestion handpicking. We describe the details of this novel
solution, as well as its implementation in the MI-CC tool the Evolutionary
Dungeon Designer. We present and discuss our findings out of the initial tests
carried out, spotting the open challenges for this combined line of research
that integrates MI-CC with Procedural Content Generation through Machine
Learning.
- Abstract(参考訳): 本稿では,qd mi-cc(quality-diversity mixed-initiative co-creativity)ツールを用いて,ユーザ生成データから学習を追求するデータ駆動ソリューションであるdesigner preference modelを提案する。
提案手法では, ユーザ間相互刺激ループの停止や, 定期的な提案ハンドピッキングによるユーザの疲労をなくすことなく, 生成したコンテンツに対するユーザエージェンシーの増大を目指す。
この新たなソリューションの詳細とMI-CCツールであるEvolutionary Dungeon Designerの実装について述べる。
機械学習によるMI-CCと手続き的コンテンツ生成を統合したこの研究ラインのオープンな課題について,本研究の成果を提示し,考察する。
関連論文リスト
- GUIDE-VAE: Advancing Data Generation with User Information and Pattern Dictionaries [0.0]
本稿では,ユーザ埋め込みを利用してユーザ誘導データを生成する条件付き生成モデルGUIDE-VAEを紹介する。
提案したGUIDE-VAEは,ユーザ間のデータ不均衡を特徴とするマルチユーザスマートメーターデータセットを用いて評価した。
論文 参考訳(メタデータ) (2024-11-06T14:11:46Z) - Towards Realistic Evaluation of Commit Message Generation by Matching Online and Offline Settings [77.20838441870151]
コミットメッセージ生成は、ソフトウェアエンジニアリングにおいて重要なタスクであり、正しく評価することが難しい。
オンラインメトリック - VCSに生成されたメッセージをコミットする前にユーザが導入する編集回数 - を使用して、オフライン実験用のメトリクスを選択します。
その結果,編集距離が最も高い相関を示すのに対し,BLEUやMETEORなどの類似度は低い相関を示すことがわかった。
論文 参考訳(メタデータ) (2024-10-15T20:32:07Z) - A Review of Modern Recommender Systems Using Generative Models (Gen-RecSys) [57.30228361181045]
この調査は、ジェネレーティブモデル(Gen-RecSys)を用いたレコメンデーションシステムにおける重要な進歩を結びつける。
対話駆動生成モデル、自然言語レコメンデーションのための大規模言語モデル(LLM)とテキストデータの使用、RSにおける画像やビデオの生成と処理のためのマルチモーダルモデルの統合。
我々の研究は、Gen-RecSysの影響と害を評価するために必要なパラダイムを強調し、オープンな課題を特定します。
論文 参考訳(メタデータ) (2024-03-31T06:57:57Z) - RELIC: Investigating Large Language Model Responses using Self-Consistency [58.63436505595177]
LLM(Large Language Models)は、フィクションと事実を混同し、幻覚として知られる非事実コンテンツを生成することで有名である。
本稿では,ユーザが生成したテキストの信頼性を把握できる対話型システムを提案する。
論文 参考訳(メタデータ) (2023-11-28T14:55:52Z) - Provengo: A Tool Suite for Scenario Driven Model-Based Testing [2.4387555567462647]
Provengoは、シナリオ駆動型モデルベーステスト(SDMBT)の実装を容易にするために設計されたツールスイートである。
Provengoでは、テスタが努力せずに自然なユーザストーリを作成し、効果的なテストを生成することのできるモデルにシームレスに統合することが可能になる。
論文 参考訳(メタデータ) (2023-08-30T10:34:12Z) - MISSRec: Pre-training and Transferring Multi-modal Interest-aware
Sequence Representation for Recommendation [61.45986275328629]
逐次レコメンデーションのためのマルチモーダル事前学習・転送学習フレームワークであるMISSRecを提案する。
ユーザ側ではトランスフォーマーベースのエンコーダデコーダモデルを設計し、コンテキストエンコーダがシーケンスレベルのマルチモーダルユーザ興味を捉えることを学習する。
候補項目側では,ユーザ適応項目表現を生成するために動的融合モジュールを採用する。
論文 参考訳(メタデータ) (2023-08-22T04:06:56Z) - Creating user stereotypes for persona development from qualitative data
through semi-automatic subspace clustering [0.0]
本稿では,ペルソナ作成プロセスの一部を自動化するために,ユーザステレオタイプをモデル化する手法を提案する。
結果は、人格設計者と人格設計者との違いが、異なる結果をもたらすことを示している。
提案アルゴリズムはパラメータ入力に基づいて同様の結果を与えるが、より厳密で最適なクラスタを見つけることができる。
論文 参考訳(メタデータ) (2023-06-26T09:49:51Z) - Evaluating Mixed-Initiative Procedural Level Design Tools using a
Triple-Blind Mixed-Method User Study [0.0]
インタラクティブな進化的最適化を用いてレベルを生成するツールを,本研究のために設計した。
このツールは、手書き地図のレベルデザインパターンを特定し、その情報を使ってインタラクティブな最適化アルゴリズムを駆動する。
複雑なイニシアティブツールを使用したデザイナの経験を、完全にランダムなレベルの提案を提供するツールを与えられたデザイナと比較した厳密なユーザスタディが設計された。
論文 参考訳(メタデータ) (2020-05-15T11:40:53Z) - FAIRS -- Soft Focus Generator and Attention for Robust Object
Segmentation from Extreme Points [70.65563691392987]
本稿では,ユーザ入力からオブジェクトのセグメンテーションを極端点と補正クリックの形で生成する手法を提案する。
提案手法は,エクストリームポイント,クリック誘導,修正クリックを原則として組み込んだ,高品質なトレーニングデータを生成する能力とスケーラビリティを実証する。
論文 参考訳(メタデータ) (2020-04-04T22:25:47Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z) - Designing for the Long Tail of Machine Learning [0.0]
機械学習のパフォーマンスがトレーニングデータとどのようにスケールし、デザイナがデータ収集、モデル開発、および与えられたモデルパフォーマンスのための貴重なインタラクションを設計するためのトレードオフをガイドするかを説明します。
我々は,ブートストラップフェーズにおける初期システムの設計に有用なパターンについて論じる。
論文 参考訳(メタデータ) (2020-01-21T11:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。