Dropout Strikes Back: Improved Uncertainty Estimation via Diversity
Sampling
- URL: http://arxiv.org/abs/2003.03274v3
- Date: Wed, 4 May 2022 19:21:56 GMT
- Title: Dropout Strikes Back: Improved Uncertainty Estimation via Diversity
Sampling
- Authors: Kirill Fedyanin, Evgenii Tsymbalov, Maxim Panov
- Abstract summary: We show that modifying the sampling distributions for dropout layers in neural networks improves the quality of uncertainty estimation.
Our main idea consists of two main steps: computing data-driven correlations between neurons and generating samples, which include maximally diverse neurons.
- Score: 3.077929914199468
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty estimation for machine learning models is of high importance in
many scenarios such as constructing the confidence intervals for model
predictions and detection of out-of-distribution or adversarially generated
points. In this work, we show that modifying the sampling distributions for
dropout layers in neural networks improves the quality of uncertainty
estimation. Our main idea consists of two main steps: computing data-driven
correlations between neurons and generating samples, which include maximally
diverse neurons. In a series of experiments on simulated and real-world data,
we demonstrate that the diversification via determinantal point processes-based
sampling achieves state-of-the-art results in uncertainty estimation for
regression and classification tasks. An important feature of our approach is
that it does not require any modification to the models or training procedures,
allowing straightforward application to any deep learning model with dropout
layers.
Related papers
- Estimating Epistemic and Aleatoric Uncertainty with a Single Model [5.871583927216653]
We introduce a new approach to ensembling, hyper-diffusion models (HyperDM)
HyperDM offers prediction accuracy on par with, and in some cases superior to, multi-model ensembles.
We validate our method on two distinct real-world tasks: x-ray computed tomography reconstruction and weather temperature forecasting.
arXiv Detail & Related papers (2024-02-05T19:39:52Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Post-hoc Uncertainty Learning using a Dirichlet Meta-Model [28.522673618527417]
We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities.
Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties.
We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications.
arXiv Detail & Related papers (2022-12-14T17:34:11Z) - Confidence estimation of classification based on the distribution of the
neural network output layer [4.529188601556233]
One of the most common problems preventing the application of prediction models in the real world is lack of generalization.
We propose novel methods that estimate uncertainty of particular predictions generated by a neural network classification model.
The proposed methods infer the confidence of a particular prediction based on the distribution of the logit values corresponding to this prediction.
arXiv Detail & Related papers (2022-10-14T12:32:50Z) - How to Combine Variational Bayesian Networks in Federated Learning [0.0]
Federated learning enables multiple data centers to train a central model collaboratively without exposing any confidential data.
deterministic models are capable of performing high prediction accuracy, their lack of calibration and capability to quantify uncertainty is problematic for safety-critical applications.
We study the effects of various aggregation schemes for variational Bayesian neural networks.
arXiv Detail & Related papers (2022-06-22T07:53:12Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Contextual Dropout: An Efficient Sample-Dependent Dropout Module [60.63525456640462]
Dropout has been demonstrated as a simple and effective module to regularize the training process of deep neural networks.
We propose contextual dropout with an efficient structural design as a simple and scalable sample-dependent dropout module.
Our experimental results show that the proposed method outperforms baseline methods in terms of both accuracy and quality of uncertainty estimation.
arXiv Detail & Related papers (2021-03-06T19:30:32Z) - Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings [7.476901945542385]
We show that Bayesian deep learning models on certain occasions marginally outperform conventional neural networks.
Preliminary investigations indicate the potential inherent role of bias due to choices of initialisation, architecture or activation functions.
arXiv Detail & Related papers (2020-09-03T16:58:15Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.