Deep learning for prediction of population health costs
- URL: http://arxiv.org/abs/2003.03466v1
- Date: Fri, 6 Mar 2020 23:33:39 GMT
- Title: Deep learning for prediction of population health costs
- Authors: Philipp Drewe-Boss, Dirk Enders, Jochen Walker, Uwe Ohler
- Abstract summary: We developed a deep neural network to predict future cost from health insurance claims records.
We applied the deep network and a ridge regression model to a sample of 1.4 million German insurants to predict total one-year health care costs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate prediction of healthcare costs is important for optimally managing
health costs. However, methods leveraging the medical richness from data such
as health insurance claims or electronic health records are missing. Here, we
developed a deep neural network to predict future cost from health insurance
claims records. We applied the deep network and a ridge regression model to a
sample of 1.4 million German insurants to predict total one-year health care
costs. Both methods were compared to Morbi-RSA models with various performance
measures and were also used to predict patients with a change in costs and to
identify relevant codes for this prediction. We showed that the neural network
outperformed the ridge regression as well as all Morbi-RSA models for cost
prediction. Further, the neural network was superior to ridge regression in
predicting patients with cost change and identified more specific codes. In
summary, we showed that our deep neural network can leverage the full
complexity of the patient records and outperforms standard approaches. We
suggest that the better performance is due to the ability to incorporate
complex interactions in the model and that the model might also be used for
predicting other health phenotypes.
Related papers
- MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Building predictive models of healthcare costs with open healthcare data [0.0]
We present an approach to developing a predictive model using machine-learning techniques.
We analyzed de-identified patient data from New York StateS, consisting of 2.3 million records in 2016.
We built models to predict costs from patient diagnoses and demographics.
arXiv Detail & Related papers (2023-04-05T02:12:58Z) - Two-step interpretable modeling of Intensive Care Acquired Infections [0.0]
We present a novel methodology for integrating high resolution longitudinal data with the dynamic prediction capabilities of survival models.
The aim is two-fold: to improve the predictive power while maintaining interpretability of the models.
arXiv Detail & Related papers (2023-01-26T14:54:17Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z) - Evaluating the performance of personal, social, health-related,
biomarker and genetic data for predicting an individuals future health using
machine learning: A longitudinal analysis [0.0]
The aim of the study is to apply a machine learning approach to identify the relative contribution of personal, social, health-related, biomarker and genetic data as predictors of future health in individuals.
Two machine learning approaches were used to build predictive models: deep learning via neural networks and XGBoost.
Results found that health-related measures had the strongest prediction of future health status, with genetic data performing poorly.
arXiv Detail & Related papers (2021-04-26T12:31:40Z) - Digital twins based on bidirectional LSTM and GAN for modelling COVID-19 [8.406968279478347]
coronavirus 2019 has spread throughout the globe infecting over 100 million people and causing the death of over 2.2 million people.
There is an urgent need to study the dynamics of epidemiological models to gain a better understanding of how such diseases spread.
Recent advances in machine learning techniques have given rise to neural networks with the ability to learn and predict complex dynamics at reduced computational costs.
arXiv Detail & Related papers (2021-02-03T11:54:24Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z) - Neural Networks and Value at Risk [59.85784504799224]
We perform Monte-Carlo simulations of asset returns for Value at Risk threshold estimation.
Using equity markets and long term bonds as test assets, we investigate neural networks.
We find our networks when fed with substantially less data to perform significantly worse.
arXiv Detail & Related papers (2020-05-04T17:41:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.