Digital twins based on bidirectional LSTM and GAN for modelling COVID-19
- URL: http://arxiv.org/abs/2102.02664v1
- Date: Wed, 3 Feb 2021 11:54:24 GMT
- Title: Digital twins based on bidirectional LSTM and GAN for modelling COVID-19
- Authors: C\'esar Quilodr\'an-Casas, Vinicius Santos Silva, Rossella Arcucci,
Claire E. Heaney, Yike Guo, Christopher C. Pain
- Abstract summary: coronavirus 2019 has spread throughout the globe infecting over 100 million people and causing the death of over 2.2 million people.
There is an urgent need to study the dynamics of epidemiological models to gain a better understanding of how such diseases spread.
Recent advances in machine learning techniques have given rise to neural networks with the ability to learn and predict complex dynamics at reduced computational costs.
- Score: 8.406968279478347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The outbreak of the coronavirus disease 2019 (COVID-19) has now spread
throughout the globe infecting over 100 million people and causing the death of
over 2.2 million people. Thus, there is an urgent need to study the dynamics of
epidemiological models to gain a better understanding of how such diseases
spread. While epidemiological models can be computationally expensive, recent
advances in machine learning techniques have given rise to neural networks with
the ability to learn and predict complex dynamics at reduced computational
costs. Here we introduce two digital twins of a SEIRS model applied to an
idealised town. The SEIRS model has been modified to take account of spatial
variation and, where possible, the model parameters are based on official virus
spreading data from the UK. We compare predictions from a data-corrected
Bidirectional Long Short-Term Memory network and a predictive Generative
Adversarial Network. The predictions given by these two frameworks are accurate
when compared to the original SEIRS model data. Additionally, these frameworks
are data-agnostic and could be applied to towns, idealised or real, in the UK
or in other countries. Also, more compartments could be included in the SEIRS
model, in order to study more realistic epidemiological behaviour.
Related papers
- MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Metapopulation Graph Neural Networks: Deep Metapopulation Epidemic
Modeling with Human Mobility [14.587916407752719]
We propose a novel hybrid model called MepoGNN for multi-step multi-region epidemic forecasting.
Our model can not only predict the number of confirmed cases but also explicitly learn the epidemiological parameters.
arXiv Detail & Related papers (2023-06-26T17:09:43Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Modelling COVID-19 Pandemic Dynamics Using Transparent, Interpretable,
Parsimonious and Simulatable (TIPS) Machine Learning Models: A Case Study
from Systems Thinking and System Identification Perspectives [1.4061680807550718]
The present study proposes using systems engineering and system identification approach to build transparent, interpretable, parsimonious and simulatable (TIPS) dynamic machine learning models.
TIPS models are developed based on the well-known NARMAX (Nonlinear AutoRegressive Moving Average with eXogenous inputs) model, which can help better understand the COVID-19 pandemic dynamics.
arXiv Detail & Related papers (2021-11-01T08:42:37Z) - Temporal Deep Learning Architecture for Prediction of COVID-19 Cases in
India [1.7969777786551424]
Recently the new machine learning approaches are being used to understand the dynamic trend of COVID-19 spread.
We designed the recurrent and convolutional neural network models: vanilla LSTM, stacked LSTM, ED-LSTM, Bi-LSTM, CNN, and hybrid CNN+LSTM model.
The results show that the stacked LSTM and hybrid CNN+LSTM models perform best relative to other models.
arXiv Detail & Related papers (2021-08-31T13:28:51Z) - Deep learning via LSTM models for COVID-19 infection forecasting in
India [13.163271874039191]
Prominent computational and mathematical models have been unreliable due to the complexity of the spread of infections.
Deep learning models such as recurrent neural networks are well suited for modelling temporal sequences.
We select states with COVID-19 hotpots in terms of the rate of infections and compare with states where infections have been contained or reached their peak.
Our results show that long-term forecasts are promising which motivates the application of the method in other countries or areas.
arXiv Detail & Related papers (2021-01-28T09:19:10Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - A Recurrent Neural Network and Differential Equation Based
Spatiotemporal Infectious Disease Model with Application to COVID-19 [3.464871689508835]
We develop an integrated disease model based on epidemic differential equations (SIR) and recurrent neural networks (RNN)
We trained and tested our model on CO-19 data in Italy, and show that it out-performs existing temporal models (fully connected NN, SIR, ARIMA) in 1-day, 3-day, and 1-week ahead forecasting.
arXiv Detail & Related papers (2020-07-14T07:04:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.