論文の概要: Generating Emotionally Aligned Responses in Dialogues using Affect
Control Theory
- arxiv url: http://arxiv.org/abs/2003.03645v2
- Date: Thu, 16 Apr 2020 06:46:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-25 19:14:16.266656
- Title: Generating Emotionally Aligned Responses in Dialogues using Affect
Control Theory
- Title(参考訳): 感情制御理論を用いた対話における感情適応応答の生成
- Authors: Nabiha Asghar, Ivan Kobyzev, Jesse Hoey, Pascal Poupart, and Muhammad
Bilal Sheikh
- Abstract要約: 感情制御理論(Affect Control Theory、ACT)は、人間と人間の相互作用に対する感情の社会的・数学的モデルである。
本研究では、ACTが感情認識型神経会話エージェントの開発にどのように役立つかを検討する。
- 参考スコア(独自算出の注目度): 15.848210524718219
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art neural dialogue systems excel at syntactic and semantic
modelling of language, but often have a hard time establishing emotional
alignment with the human interactant during a conversation. In this work, we
bring Affect Control Theory (ACT), a socio-mathematical model of emotions for
human-human interactions, to the neural dialogue generation setting. ACT makes
predictions about how humans respond to emotional stimuli in social situations.
Due to this property, ACT and its derivative probabilistic models have been
successfully deployed in several applications of Human-Computer Interaction,
including empathetic tutoring systems, assistive healthcare devices and
two-person social dilemma games. We investigate how ACT can be used to develop
affect-aware neural conversational agents, which produce emotionally aligned
responses to prompts and take into consideration the affective identities of
the interactants.
- Abstract(参考訳): 最先端のニューラル対話システムは、言語の構文的および意味的モデリングに優れているが、会話中に人間の対話者との感情的連携を確立するのに苦労している。
本研究では,人間と人間のインタラクションに対する感情の社会・数学モデルであるimpact control theory(act)を,神経対話生成環境に導入する。
actは、社会状況における感情的な刺激に対する人間の反応の予測を行う。
この性質のため、ACTとその派生確率モデルは、共感型チュータリングシステム、補助医療機器、および2対のソーシャルジレンマゲームなど、ヒューマン・コンピュータインタラクションのいくつかの応用に成功している。
本研究は,actを用いて感情認識型ニューラル・会話エージェントの開発を行い,プロンプトに対する感情協調反応を生成し,対話者の感情的同一性を検討する。
関連論文リスト
- CAPE: A Chinese Dataset for Appraisal-based Emotional Generation using Large Language Models [30.40159858361768]
認知評価理論に基づく感情コーパスという中国のデータセットであるCAPEを作成するための2段階の自動データ生成フレームワークを提案する。
このコーパスは、多様な個人的・状況的要因を考慮し、文脈的に適切な感情的反応を伴う対話を生成する。
我々の研究は、会話エージェントにおける感情表現を前進させる可能性を示し、よりニュアンスで有意義な人間とコンピュータの相互作用の道を開いた。
論文 参考訳(メタデータ) (2024-10-18T03:33:18Z) - SemEval-2024 Task 3: Multimodal Emotion Cause Analysis in Conversations [53.60993109543582]
SemEval-2024 Task 3 "Multimodal Emotion Cause Analysis in Conversations" は、会話からすべての感情とそれに対応する原因を抽出することを目的としている。
異なるモダリティ設定の下では、2つのサブタスクから構成される: 会話におけるテキスト感情因果ペア抽出(TECPE)と会話におけるマルチモーダル感情因果ペア抽出(MECPE)である。
本稿では,タスク,データセット,評価設定について紹介し,トップチームのシステムを要約し,参加者の知見について議論する。
論文 参考訳(メタデータ) (2024-05-19T09:59:00Z) - Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
ダイアログシステムに与えられた個性に基づいて感情を生成する新しいタスクであるパーソナリティ影響感情生成を提案する。
本課題の課題,すなわち,(1)個性と感情的要因を不均一に統合し,(2)対話場面における多粒性感情情報を抽出する。
その結果,感情生成性能はマクロF1では13%,重み付きF1では5%向上することが示唆された。
論文 参考訳(メタデータ) (2024-04-03T08:48:50Z) - Emotion-Oriented Behavior Model Using Deep Learning [0.9176056742068812]
感情に基づく行動予測の精度は2尾のピアソン相関を用いて統計的に検証される。
本研究は,感情指向行動に基づく多面的人工エージェントインタラクションの基盤となる。
論文 参考訳(メタデータ) (2023-10-28T17:27:59Z) - Think Twice: A Human-like Two-stage Conversational Agent for Emotional Response Generation [16.659457455269127]
感情対話生成のための2段階対話エージェントを提案する。
まず,感情アノテートされた対話コーパスを使わずに訓練された対話モデルを用いて,文脈意味に合致するプロトタイプ応答を生成する。
第二に、第一段階のプロトタイプは共感仮説で制御可能な感情精錬器によって修正される。
論文 参考訳(メタデータ) (2023-01-12T10:03:56Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
社会ロボティクスでは、人間型ロボットに感情の身体的表現を生成する能力を与えることで、人間とロボットの相互作用とコラボレーションを改善することができる。
我々は、手作業で設計されたいくつかの身体表現から学習する深層学習データ駆動フレームワークを実装した。
評価実験の結果, 生成した表現の人間同型とアニマシーは手作りの表現と異なる認識が得られなかった。
論文 参考訳(メタデータ) (2022-05-02T09:21:39Z) - A MultiModal Social Robot Toward Personalized Emotion Interaction [1.2183405753834562]
本研究では,ロボットインタラクションポリシーを強化するために,強化学習を伴うマルチモーダルヒューマンロボットインタラクション(HRI)フレームワークを実証する。
目標は、ロボットがより自然で魅力的なHRIフレームワークを作れるように、このフレームワークを社会シナリオに適用することだ。
論文 参考訳(メタデータ) (2021-10-08T00:35:44Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
実世界のデータを用いた実験により,提案手法は,コンテンツコヒーレンスと感情の適切性の両方の観点から,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T06:26:15Z) - Disambiguating Affective Stimulus Associations for Robot Perception and
Dialogue [67.89143112645556]
知覚された聴覚刺激と感情表現の関連性を学ぶことができるNICOロボットを提供します。
NICOは、感情駆動対話システムの助けを借りて、個人と特定の刺激の両方でこれを行うことができる。
ロボットは、実際のHRIシナリオにおいて、被験者の聴覚刺激の楽しさを判断するために、この情報を利用することができる。
論文 参考訳(メタデータ) (2021-03-05T20:55:48Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
外部知識の不足により、感情的な対話システムは暗黙の感情を知覚し、限られた対話履歴から感情的な対話を学ぶことが困難になる。
本研究では,情緒的対話生成における感情を明確に理解し,表現するために,常識的知識や情緒的語彙的知識などの外部知識を活用することを提案する。
論文 参考訳(メタデータ) (2020-09-21T09:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。