論文の概要: Empathetic Conversational Agents: Utilizing Neural and Physiological Signals for Enhanced Empathetic Interactions
- arxiv url: http://arxiv.org/abs/2501.08393v1
- Date: Tue, 14 Jan 2025 19:19:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:51:33.923056
- Title: Empathetic Conversational Agents: Utilizing Neural and Physiological Signals for Enhanced Empathetic Interactions
- Title(参考訳): 交感神経伝達因子 : 神経信号と生理信号を用いた交感神経相互作用の増強
- Authors: Nastaran Saffaryazdi, Tamil Selvan Gunasekaran, Kate Laveys, Elizabeth Broadbent, Mark Billinghurst,
- Abstract要約: 会話エージェント(CA)は、テキストベースのチャットボットから豊かな感情表現が可能な共感的デジタル人間(DH)へと進化することで、人間とコンピュータの相互作用に革命をもたらしている。
本稿では,脳神経信号と生理信号とをCAの知覚モジュールに統合し,共感的相互作用を増強する方法について検討する。
- 参考スコア(独自算出の注目度): 18.8995194180207
- License:
- Abstract: Conversational agents (CAs) are revolutionizing human-computer interaction by evolving from text-based chatbots to empathetic digital humans (DHs) capable of rich emotional expressions. This paper explores the integration of neural and physiological signals into the perception module of CAs to enhance empathetic interactions. By leveraging these cues, the study aims to detect emotions in real-time and generate empathetic responses and expressions. We conducted a user study where participants engaged in conversations with a DH about emotional topics. The DH responded and displayed expressions by mirroring detected emotions in real-time using neural and physiological cues. The results indicate that participants experienced stronger emotions and greater engagement during interactions with the Empathetic DH, demonstrating the effectiveness of incorporating neural and physiological signals for real-time emotion recognition. However, several challenges were identified, including recognition accuracy, emotional transition speeds, individual personality effects, and limitations in voice tone modulation. Addressing these challenges is crucial for further refining Empathetic DHs and fostering meaningful connections between humans and artificial entities. Overall, this research advances human-agent interaction and highlights the potential of real-time neural and physiological emotion recognition in creating empathetic DHs.
- Abstract(参考訳): 会話エージェント(CA)は、テキストベースのチャットボットから豊かな感情表現が可能な共感的デジタル人間(DH)へと進化することで、人間とコンピュータの相互作用に革命をもたらしている。
本稿では,脳神経信号と生理信号とをCAの知覚モジュールに統合し,共感的相互作用を増強する方法について検討する。
これらの手がかりを活用することで、リアルタイムで感情を検知し、共感的な反応と表情を生成することを目的としている。
情緒的話題についてDHと会話する参加者を対象に,ユーザスタディを行った。
DHは、神経および生理的手がかりを用いて、検出された感情をリアルタイムでミラーリングすることで、反応し、表現した。
その結果、参加者は共感的DHとの相互作用中に強い感情やエンゲージメントを経験し、リアルタイムの感情認識に神経および生理的シグナルを組み込むことの有効性を実証した。
しかし、認識精度、感情移行速度、個性効果、声調変調の制限など、いくつかの課題が特定された。
これらの課題に対処することは、共感的DHをさらに洗練し、人間と人工体の間の有意義なつながりを育むために重要である。
全体として、この研究は人間とエージェントの相互作用を前進させ、情緒的DHを作り出す上でのリアルタイム神経および生理的感情認識の可能性を強調している。
関連論文リスト
- Emotion Analysis on EEG Signal Using Machine Learning and Neural Network [0.0]
本研究の目的は,脳信号を用いた感情認識能力の向上である。
人間と機械の相互作用技術への様々なアプローチは長い間進行中であり、近年では脳信号を使って感情を自動的に理解することに成功した。
論文 参考訳(メタデータ) (2023-07-09T09:50:34Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
社会ロボティクスでは、人間型ロボットに感情の身体的表現を生成する能力を与えることで、人間とロボットの相互作用とコラボレーションを改善することができる。
我々は、手作業で設計されたいくつかの身体表現から学習する深層学習データ駆動フレームワークを実装した。
評価実験の結果, 生成した表現の人間同型とアニマシーは手作りの表現と異なる認識が得られなかった。
論文 参考訳(メタデータ) (2022-05-02T09:21:39Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
実世界のデータを用いた実験により,提案手法は,コンテンツコヒーレンスと感情の適切性の両方の観点から,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T06:26:15Z) - Disambiguating Affective Stimulus Associations for Robot Perception and
Dialogue [67.89143112645556]
知覚された聴覚刺激と感情表現の関連性を学ぶことができるNICOロボットを提供します。
NICOは、感情駆動対話システムの助けを借りて、個人と特定の刺激の両方でこれを行うことができる。
ロボットは、実際のHRIシナリオにおいて、被験者の聴覚刺激の楽しさを判断するために、この情報を利用することができる。
論文 参考訳(メタデータ) (2021-03-05T20:55:48Z) - Emotion pattern detection on facial videos using functional statistics [62.997667081978825]
顔面筋運動の有意なパターンを抽出する機能的ANOVAに基づく手法を提案する。
感情群間の表現に時間的差があるかどうかを関数fテストを用いて判定する。
論文 参考訳(メタデータ) (2021-03-01T08:31:08Z) - Target Guided Emotion Aware Chat Machine [58.8346820846765]
意味レベルと感情レベルにおける投稿に対する応答の整合性は、人間のような対話を提供する対話システムにとって不可欠である。
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-11-15T01:55:37Z) - Prediction of Human Empathy based on EEG Cortical Asymmetry [0.0]
特定の周波数帯における脳振動の側方化は、自己申告された共感スコアの重要な予測因子である。
結果は、感情の表現や認識が困難である人々を支援する脳-コンピュータインターフェースの開発に利用される。
論文 参考訳(メタデータ) (2020-05-06T13:49:56Z) - Generating Emotionally Aligned Responses in Dialogues using Affect
Control Theory [15.848210524718219]
感情制御理論(Affect Control Theory、ACT)は、人間と人間の相互作用に対する感情の社会的・数学的モデルである。
本研究では、ACTが感情認識型神経会話エージェントの開発にどのように役立つかを検討する。
論文 参考訳(メタデータ) (2020-03-07T19:31:08Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z) - Detecting Emotion Primitives from Speech and their use in discerning
Categorical Emotions [16.886826928295203]
感情は人間同士のコミュニケーションにおいて重要な役割を担い、幸福やフラストレーション、誠実さといった感情を伝えることができる。
この研究は、感情プリミティブが、幸福、嫌悪、軽蔑、怒り、驚きといったカテゴリー的感情を中性的なスピーチから検出する方法について研究した。
以上の結果から, 覚醒と支配は, 感情のより優れた検出方法であった。
論文 参考訳(メタデータ) (2020-01-31T03:11:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。