論文の概要: Solving Robotics Problems in Zero-Shot with Vision-Language Models
- arxiv url: http://arxiv.org/abs/2407.19094v4
- Date: Fri, 11 Oct 2024 04:58:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 14:38:53.705539
- Title: Solving Robotics Problems in Zero-Shot with Vision-Language Models
- Title(参考訳): ビジョンランゲージモデルを用いたゼロショットにおけるロボティクス問題の解法
- Authors: Zidan Wang, Rui Shen, Bradly Stadie,
- Abstract要約: ゼロショット方式でロボットの問題を解くために設計された多エージェント視覚大言語モデル(VLLM)フレームワークであるWonderful Teamを紹介した。
我々の文脈では、ゼロショットは、新しい環境において、ロボットの周囲のイメージとタスク記述を備えたVLLMを提供することを意味する。
私たちのシステムは、操作、ゴールリーチ、視覚的推論といった多様なタスクを、すべてゼロショットで処理できる能力を示しています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Wonderful Team, a multi-agent Vision Large Language Model (VLLM) framework designed to solve robotics problems in a zero-shot regime. In our context, zero-shot means that for a novel environment, we provide a VLLM with an image of the robot's surroundings and a task description, and the VLLM outputs the sequence of actions necessary for the robot to complete the task. Unlike prior work that requires fine-tuning parts of the pipeline -- such as adjusting an LLM on robot-specific data or training separate vision encoders -- our approach demonstrates that with careful engineering, a single off-the-shelf VLLM can autonomously handle all aspects of a robotics task, from high-level planning to low-level location extraction and action execution. Crucially, compared to using GPT-4o alone, Wonderful Team is self-corrective and capable of iteratively fixing its own mistakes, enabling it to solve challenging long-horizon tasks. We validate our framework through extensive experiments, both in simulated environments using VIMABench and in real-world settings. Our system showcases the ability to handle diverse tasks such as manipulation, goal-reaching, and visual reasoning -- all in a zero-shot manner. These results underscore a key point: vision-language models have progressed rapidly in the past year and should be strongly considered as a backbone for many robotics problems moving forward.
- Abstract(参考訳): ゼロショット方式でロボットの問題を解くために設計された多エージェント視覚大言語モデル(VLLM)フレームワークであるWonderful Teamを紹介した。
我々の文脈では、ゼロショットとは、新しい環境において、ロボットの周囲のイメージとタスク記述をVLLMに提供し、ロボットがタスクを完了するために必要なアクションのシーケンスをVLLMが出力することを意味する。
ロボット固有のデータに対するLLMの調整や、別々のビジョンエンコーダのトレーニングなど、パイプラインの微調整が必要な以前の作業とは異なり、当社のアプローチでは、慎重にエンジニアリングすることで、単一のオフザシェルフVLLMが、高レベルの計画から低レベルのロケーション抽出、アクション実行に至るまで、ロボットタスクのすべての側面を自律的に処理できることが示されています。
重要なことに、GPT-4o単独で使うのに比べ、Wonderful Teamは自己修正的であり、自分自身のミスを反復的に修正できるため、長期的な課題を解決できる。
我々は、VIMABenchを用いたシミュレーション環境と実世界の環境の両方において、広範な実験を通してフレームワークを検証する。
私たちのシステムは、操作、ゴールリーチ、視覚的推論といった多様なタスクを、すべてゼロショットで処理できる能力を示しています。
これらの結果は、この1年で視覚言語モデルは急速に進歩し、多くのロボティクス問題のバックボーンとして強く考えるべきである、という重要なポイントを浮き彫りにしている。
関連論文リスト
- Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
脚のついたロボットは、様々な環境をナビゲートし、幅広い障害を克服することができる。
現在の学習手法は、人間の監督を伴わずに、予期せぬ状況の長い尾への一般化に苦慮することが多い。
本稿では,VLM-Predictive Control (VLM-PC) というシステムを提案する。
論文 参考訳(メタデータ) (2024-07-02T21:00:30Z) - LLARVA: Vision-Action Instruction Tuning Enhances Robot Learning [50.99807031490589]
LLARVAは,ロボット学習タスク,シナリオ,環境を統一するための,新しい指導指導法で訓練されたモデルである。
我々は,Open X-Embodimentデータセットから8.5Mの画像-視覚的トレースペアを生成し,モデルを事前学習する。
実験によって強い性能が得られ、LLARVAは現代のいくつかのベースラインと比較してよく機能することを示した。
論文 参考訳(メタデータ) (2024-06-17T17:55:29Z) - MOKA: Open-World Robotic Manipulation through Mark-Based Visual Prompting [97.52388851329667]
我々は,自由形式の言語命令で指定されたロボット操作タスクを解決するために,マーキングオープンワールドキーポイントアフォード(Moka)を導入する。
我々のアプローチの中心は、VLMの観測画像と物理世界におけるロボットの行動に関する予測を橋渡しする、コンパクトな点ベースの可測性表現である。
ツールの使用,変形可能な身体操作,オブジェクト再構成など,さまざまなテーブルトップ操作タスクにおけるMokaの性能評価と解析を行った。
論文 参考訳(メタデータ) (2024-03-05T18:08:45Z) - PIVOT: Iterative Visual Prompting Elicits Actionable Knowledge for VLMs [140.14239499047977]
視覚言語モデル(VLM)は、論理的推論から視覚的理解に至るまで、様々なタスクにわたって印象的な能力を示している。
PIVOT(Prompting with Iterative Visual Optimization)と呼ばれる新しい視覚的プロンプト手法を提案する。
私たちのアプローチは、ロボットのトレーニングデータやさまざまな環境でのナビゲーション、その他の能力なしに、ロボットシステムのゼロショット制御を可能にします。
論文 参考訳(メタデータ) (2024-02-12T18:33:47Z) - InCoRo: In-Context Learning for Robotics Control with Feedback Loops [4.702566749969133]
InCoRoは、LLMコントローラ、シーン理解ユニット、ロボットからなる古典的なロボットフィードバックループを使用するシステムである。
システムの一般化能力を強調し,InCoRoが成功率において先行技術を上回ることを示す。
この研究は、動的環境に適応する信頼性があり、効率的でインテリジェントな自律システムを構築するための道を開いた。
論文 参考訳(メタデータ) (2024-02-07T19:01:11Z) - QUAR-VLA: Vision-Language-Action Model for Quadruped Robots [37.952398683031895]
中心となるアイデアは、ロボットの全体的な知性を高めることだ。
本稿では,VLAモデルのファミリである Quadruped Robotic Transformer (QUART) を提案する。
提案手法は,動作可能なロボットポリシーを導き,一貫した能力の獲得を可能にする。
論文 参考訳(メタデータ) (2023-12-22T06:15:03Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - Vision-Language Foundation Models as Effective Robot Imitators [48.73027330407576]
我々は、オープンソースのVLMであるOpenFlamingo上に構築されたRoboFlamingoというビジョン言語操作フレームワークを考案した。
テストベンチマークでは,最先端のパフォーマンスをはるかに上回って,ロボット制御にVLMを適用する上で,RoboFlamingoが効果的かつ競争力のある代替手段であることを示す。
論文 参考訳(メタデータ) (2023-11-02T16:34:33Z) - RoboLLM: Robotic Vision Tasks Grounded on Multimodal Large Language
Models [4.4173427917548524]
MLLM(Multimodal Large Language Models)は、様々な下流タスクのための新しいバックボーンとして登場した。
我々は、ARMBenchチャレンジにおける視覚的認識タスクに対処するため、BEiT-3バックボーンを備えたRoboLLMフレームワークを紹介した。
論文 参考訳(メタデータ) (2023-10-16T09:30:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。