QTIP: Quick simulation-based adaptation of Traffic model per Incident
Parameters
- URL: http://arxiv.org/abs/2003.04109v1
- Date: Mon, 9 Mar 2020 13:07:07 GMT
- Title: QTIP: Quick simulation-based adaptation of Traffic model per Incident
Parameters
- Authors: Inon Peled, Raghuveer Kamalakar, Carlos Lima Azevedo, Francisco C.
Pereira
- Abstract summary: We describe QTIP: a simulation-based framework for adaptation of prediction models upon traffic disruption.
QTIP performs real-time simulations of the affected road for multiple scenarios, analyzes the results, and suggests a change to an ordinary prediction model.
We experiment QTIP in a case study of a Danish motorway, and the results show that QTIP can improve traffic prediction in the first critical minutes of road incidents.
- Score: 6.59529078336196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current data-driven traffic prediction models are usually trained with large
datasets, e.g. several months of speeds and flows. Such models provide very
good fit for ordinary road conditions, but often fail just when they are most
needed: when traffic suffers a sudden and significant disruption, such as a
road incident. In this work, we describe QTIP: a simulation-based framework for
quasi-instantaneous adaptation of prediction models upon traffic disruption. In
a nutshell, QTIP performs real-time simulations of the affected road for
multiple scenarios, analyzes the results, and suggests a change to an ordinary
prediction model accordingly. QTIP constructs the simulated scenarios per
properties of the incident, as conveyed by immediate distress signals from
affected vehicles. Such real-time signals are provided by In-Vehicle Monitor
Systems, which are becoming increasingly prevalent world-wide. We experiment
QTIP in a case study of a Danish motorway, and the results show that QTIP can
improve traffic prediction in the first critical minutes of road incidents.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - MSCT: Addressing Time-Varying Confounding with Marginal Structural Causal Transformer for Counterfactual Post-Crash Traffic Prediction [24.3907895281179]
This paper presents a novel deep learning model designed for counterfactual post-crash traffic prediction.
The proposed model is treatment-aware, with a specific focus on comprehending and predicting traffic speed under hypothetical crash intervention strategies.
The model is validated using both synthetic and real-world data, demonstrating that MSCT outperforms state-of-the-art models in multi-step-ahead prediction performance.
arXiv Detail & Related papers (2024-07-19T06:42:41Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
Motion planners (MPs) are crucial for safe navigation in complex urban environments.
nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic.
We present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
arXiv Detail & Related papers (2024-06-15T18:53:45Z) - An Application of Vector Autoregressive Model for Analyzing the Impact
of Weather And Nearby Traffic Flow On The Traffic Volume [0.0]
This paper aims to predict the traffic flow at one road segment based on nearby traffic volume and weather conditions.
Our team also discover the impact of weather conditions and nearby traffic volume on the traffic flow at a target point.
arXiv Detail & Related papers (2023-11-12T16:45:29Z) - Leveraging Neo4j and deep learning for traffic congestion simulation &
optimization [0.0]
We show how traffic propagates backward in case of congestion or accident scenarios and its overall impact on other segments of the roads.
We also train a sequential RNN-LSTM (Long Short-Term Memory) deep learning model on the real-time traffic data to assess the accuracy of simulation results based on a road-specific congestion.
arXiv Detail & Related papers (2023-04-01T01:23:10Z) - Traffic Volume Prediction using Memory-Based Recurrent Neural Networks:
A comparative analysis of LSTM and GRU [5.320087179174425]
We develop non-linear memory-based deep neural network models to forecast traffic volume in real-time.
Our experiments demonstrate the effectiveness of the proposed models in predicting traffic volume in highly dynamic and heterogeneous traffic environments.
arXiv Detail & Related papers (2023-03-22T15:25:07Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
Traffic data are highly nonlinear and have complex spatial correlations between road nodes.
Existing approaches usually use fixed traffic road network topology maps and independent time series modules to capture Spatial-temporal correlations.
We propose a new prediction model which captures the spatial dependence of the traffic network through a Graph Attention Network(GAT) and then analyzes the causal relationship of the traffic data.
arXiv Detail & Related papers (2022-03-21T06:38:34Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.