MSCT: Addressing Time-Varying Confounding with Marginal Structural Causal Transformer for Counterfactual Post-Crash Traffic Prediction
- URL: http://arxiv.org/abs/2407.14065v1
- Date: Fri, 19 Jul 2024 06:42:41 GMT
- Title: MSCT: Addressing Time-Varying Confounding with Marginal Structural Causal Transformer for Counterfactual Post-Crash Traffic Prediction
- Authors: Shuang Li, Ziyuan Pu, Nan Zhang, Duxin Chen, Lu Dong, Daniel J. Graham, Yinhai Wang,
- Abstract summary: This paper presents a novel deep learning model designed for counterfactual post-crash traffic prediction.
The proposed model is treatment-aware, with a specific focus on comprehending and predicting traffic speed under hypothetical crash intervention strategies.
The model is validated using both synthetic and real-world data, demonstrating that MSCT outperforms state-of-the-art models in multi-step-ahead prediction performance.
- Score: 24.3907895281179
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic crashes profoundly impede traffic efficiency and pose economic challenges. Accurate prediction of post-crash traffic status provides essential information for evaluating traffic perturbations and developing effective solutions. Previous studies have established a series of deep learning models to predict post-crash traffic conditions, however, these correlation-based methods cannot accommodate the biases caused by time-varying confounders and the heterogeneous effects of crashes. The post-crash traffic prediction model needs to estimate the counterfactual traffic speed response to hypothetical crashes under various conditions, which demonstrates the necessity of understanding the causal relationship between traffic factors. Therefore, this paper presents the Marginal Structural Causal Transformer (MSCT), a novel deep learning model designed for counterfactual post-crash traffic prediction. To address the issue of time-varying confounding bias, MSCT incorporates a structure inspired by Marginal Structural Models and introduces a balanced loss function to facilitate learning of invariant causal features. The proposed model is treatment-aware, with a specific focus on comprehending and predicting traffic speed under hypothetical crash intervention strategies. In the absence of ground-truth data, a synthetic data generation procedure is proposed to emulate the causal mechanism between traffic speed, crashes, and covariates. The model is validated using both synthetic and real-world data, demonstrating that MSCT outperforms state-of-the-art models in multi-step-ahead prediction performance. This study also systematically analyzes the impact of time-varying confounding bias and dataset distribution on model performance, contributing valuable insights into counterfactual prediction for intelligent transportation systems.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Causally-Aware Spatio-Temporal Multi-Graph Convolution Network for Accurate and Reliable Traffic Prediction [5.200012764049096]
This study focuses on an instance of--temporal problem--traffic prediction--to demonstrate an advanced deep learning model for making accurate and reliable forecast.
We propose an end-to-end traffic prediction framework that leverages three primary components to accurate and reliable traffic predictions.
Experimental results on two real-world traffic datasets demonstrate that the method outperforms several state-of-the-art models in prediction accuracy.
arXiv Detail & Related papers (2024-08-23T14:35:54Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
Uncertainty quantification (UQ) methods provide an approach to induce probabilistic reasoning.
We investigate their application to a large-scale image-based traffic dataset spanning multiple cities.
We find that our approach can capture both temporal and spatial effects on traffic behaviour in a representative case study for the city of Moscow.
arXiv Detail & Related papers (2023-08-11T13:35:52Z) - Causal conditional hidden Markov model for multimodal traffic prediction [2.991894112851257]
We propose a Causal Hidden Markov Model (CCHMM) to predict multimodal traffic flow.
Experiments on real-world datasets show that CCHMM can effectively disentangle causal representations of concepts of interest.
arXiv Detail & Related papers (2023-01-19T01:56:43Z) - Spatio-temporal neural structural causal models for bike flow prediction [2.991894112851257]
The fundamental issue of managing bike-sharing systems is bike flow prediction.
Recent methods over-emphasize the contextual conditions on the transportation system.
We propose a Spatiotemporal-temporal Structure Causal Model.
arXiv Detail & Related papers (2023-01-19T01:39:21Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
Traffic data are highly nonlinear and have complex spatial correlations between road nodes.
Existing approaches usually use fixed traffic road network topology maps and independent time series modules to capture Spatial-temporal correlations.
We propose a new prediction model which captures the spatial dependence of the traffic network through a Graph Attention Network(GAT) and then analyzes the causal relationship of the traffic data.
arXiv Detail & Related papers (2022-03-21T06:38:34Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.