論文の概要: 3D Quasi-Recurrent Neural Network for Hyperspectral Image Denoising
- arxiv url: http://arxiv.org/abs/2003.04547v1
- Date: Tue, 10 Mar 2020 06:14:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 21:12:51.439130
- Title: 3D Quasi-Recurrent Neural Network for Hyperspectral Image Denoising
- Title(参考訳): ハイパースペクトル画像復調のための3次元準リカレントニューラルネットワーク
- Authors: Kaixuan Wei, Ying Fu, Hua Huang
- Abstract要約: HS画像中の構造スペクトル相関を抽出するために3次元畳み込みを用いる。
因果依存をなくすために グローバルな方向構造が 交互に導入される。
HSI復調実験は、最先端の計算よりも大幅に改善された。
- 参考スコア(独自算出の注目度): 25.641742612227148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an alternating directional 3D quasi-recurrent
neural network for hyperspectral image (HSI) denoising, which can effectively
embed the domain knowledge -- structural spatio-spectral correlation and global
correlation along spectrum. Specifically, 3D convolution is utilized to extract
structural spatio-spectral correlation in an HSI, while a quasi-recurrent
pooling function is employed to capture the global correlation along spectrum.
Moreover, alternating directional structure is introduced to eliminate the
causal dependency with no additional computation cost. The proposed model is
capable of modeling spatio-spectral dependency while preserving the flexibility
towards HSIs with arbitrary number of bands. Extensive experiments on HSI
denoising demonstrate significant improvement over state-of-the-arts under
various noise settings, in terms of both restoration accuracy and computation
time. Our code is available at https://github.com/Vandermode/QRNN3D.
- Abstract(参考訳): 本稿では,ハイパースペクトル画像(hsi)デノイジングのための交互方向3次元準リカレントニューラルネットワークを提案し,スペクトルに沿った領域知識 -- 構造空間スペクトル相関と大域相関を効果的に組み込む。
具体的には、3次元畳み込みを用いてHSIの構造空間-スペクトル相関を抽出し、準再帰プール関数を用いてスペクトルに沿った大域的相関を捉える。
さらに,計算コストを増すことなく因果依存性を排除するために,方向の交互構造を導入する。
提案モデルは、任意のバンド数でHSIに対する柔軟性を保ちながら、スペクトル依存性をモデル化することができる。
HSI復調に関する大規模な実験は、復元精度と計算時間の両方の観点から、様々な騒音条件下での最先端技術よりも大幅に改善されている。
私たちのコードはhttps://github.com/vandermode/qrnn3dで利用可能です。
関連論文リスト
- Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
ノイズの摂動は、しばしば3次元の点雲を破損させ、表面の再構成、レンダリング、さらなる処理といった下流のタスクを妨げる。
本稿では,GDGCNと呼ばれる粒度動的グラフ畳み込みネットワークについて紹介する。
論文 参考訳(メタデータ) (2024-11-21T14:19:32Z) - 3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction [50.07071392673984]
既存の方法は、角度や四元数を用いて空間領域でパラメータ化された3次元回転を学習する。
本稿では,3次元回転回帰のためのWigner-D係数を直接予測する周波数領域アプローチを提案する。
提案手法は, ModelNet10-SO(3) や PASCAL3D+ などのベンチマーク上での最先端結果を実現する。
論文 参考訳(メタデータ) (2024-11-01T12:50:38Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - Hyperspectral Image Denoising via Self-Modulating Convolutional Neural
Networks [15.700048595212051]
相関スペクトルと空間情報を利用した自己変調畳み込みニューラルネットワークを提案する。
モデルの中心には新しいブロックがあり、隣り合うスペクトルデータに基づいて、ネットワークが適応的に特徴を変換することができる。
合成データと実データの両方の実験解析により,提案したSM-CNNは,他の最先端HSI復調法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-09-15T06:57:43Z) - Intensity Profile Projection: A Framework for Continuous-Time
Representation Learning for Dynamic Networks [50.2033914945157]
本稿では、連続時間動的ネットワークデータのための表現学習フレームワークIntensity Profile Projectionを提案する。
このフレームワークは3つの段階から構成される: 対の強度関数を推定し、強度再構成誤差の概念を最小化する射影を学習する。
さらに、推定軌跡の誤差を厳密に制御する推定理論を開発し、その表現がノイズに敏感な追従解析に利用できることを示す。
論文 参考訳(メタデータ) (2023-06-09T15:38:25Z) - Spectral Enhanced Rectangle Transformer for Hyperspectral Image
Denoising [64.11157141177208]
ハイパースペクトル画像の空間的およびスペクトル的相関をモデル化するスペクトル拡張矩形変換器を提案する。
前者に対しては、長方形自己アテンションを水平および垂直に利用し、空間領域における非局所的類似性を捉える。
後者のために,空間スペクトル立方体の大域的低ランク特性を抽出し,雑音を抑制するスペクトル拡張モジュールを設計する。
論文 参考訳(メタデータ) (2023-04-03T09:42:13Z) - Hybrid Spectral Denoising Transformer with Guided Attention [34.34075175179669]
ハイブリットスペクトルデノナイジング用ハイブリットスペクトルデノナイジングトランス(HSDT)を提案する。
我々のHSDTは、計算オーバーヘッドを低く保ちながら、既存の最先端手法よりも大幅に優れています。
論文 参考訳(メタデータ) (2023-03-16T02:24:31Z) - Improved Quasi-Recurrent Neural Network for Hyperspectral Image
Denoising [9.723155514555765]
いくつかの簡単な修正でQRNN3Dの性能が大幅に改善できることが示される。
本稿では,そのバニラ付加スキップ接続を置き換え,エンコーダとデコーダの機能の融合を図るための適応融合モジュールを提案する。
各種ノイズ設定実験の結果,提案手法の有効性と性能が示された。
論文 参考訳(メタデータ) (2022-11-27T12:38:03Z) - Non-local Meets Global: An Iterative Paradigm for Hyperspectral Image
Restoration [66.68541690283068]
ハイパースペクトル画像復元のための空間特性とスペクトル特性を組み合わせた統一パラダイムを提案する。
提案するパラダイムは,非局所空間デノゲーションと光計算の複雑さから,性能上の優位性を享受する。
HSI復調、圧縮再構成、塗装タスクの実験は、シミュレーションと実際のデータセットの両方で、その優位性を示している。
論文 参考訳(メタデータ) (2020-10-24T15:53:56Z) - Hyperspectral Image Denoising with Partially Orthogonal Matrix Vector
Tensor Factorization [42.56231647066719]
ハイパースペクトル画像(HSI)は、スペクトルの余分な情報により、様々な用途の自然画像に対していくつかの利点がある。
買収の間、しばしばガウシアンノイズ、インパルスノイズ、期限、ストライプなどの厳しい騒音によって汚染される。
本研究では,スムーズかつロバストな低ランクテンソルリカバリというHSI復元手法を提案する。
論文 参考訳(メタデータ) (2020-06-29T02:10:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。