A superconducting detector that counts microwave photons up to two
- URL: http://arxiv.org/abs/2003.04625v1
- Date: Tue, 10 Mar 2020 10:38:40 GMT
- Title: A superconducting detector that counts microwave photons up to two
- Authors: Andrii M. Sokolov and Frank K. Wilhelm
- Abstract summary: We propose a detector of microwave photons which can distinguish the vacuum state, one-photon state, and the states with two or more photons.
Its operation is based on the two-photon transition in a biased Josephson junction and detection occurs when it switches from a superconducting to a normal state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a detector of microwave photons which can distinguish the vacuum
state, one-photon state, and the states with two or more photons. Its operation
is based on the two-photon transition in a biased Josephson junction and
detection occurs when it switches from a superconducting to a normal state. We
model the detector theoretically. The detector performs with more than 90%
success probability in several microseconds. It is sensitive for the 8.2GHz
photons. The working frequency could be set at the design stage in the range
from about 1GHz to 20GHz.
Related papers
- Deterministic generation of a 20-qubit two-dimensional photonic cluster state [87.34681687753141]
We present a device capable of emitting large-scale entangled microwave photonic states in a two dimensional ladder structure.
By interleaving two-qubit gates with controlled photon emission, we generate 2 x n grids of time- and frequency-multiplexed cluster states of itinerant microwave photons.
We measure a signature of localizable entanglement across up to 20 photonic qubits.
arXiv Detail & Related papers (2024-09-10T16:25:24Z) - Observation of thermal microwave photons with a Josephson junction detector [0.0]
Single photon detectors (SPDs) were demonstrated from $gamma$-rays to infrared wavelengths.
The energy of $10,mathrmGHz$ microwave photon, about $40,mathrmmu eV$ or $7, mathrmyJ,$ is enough to force a superconducting Josephson junction into its resistive state.
The device shows an efficiency up to 40% and a dark count rate of $0.1,mathrmHz$ in a bandwidth of several gigahertz.
arXiv Detail & Related papers (2024-04-16T09:57:30Z) - Microwave single-photon detection using a hybrid spin-optomechanical
quantum interface [0.0]
We propose a hybrid spin-optomechanical interface to detect single microwave photons.
The microwave photons are coupled to a phononic resonator via piezoelectric actuation.
arXiv Detail & Related papers (2024-01-19T02:00:38Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Microwave photon-number amplification [0.0]
Single photon detectors accurately detect single photons, but saturate as soon as two photons arrive simultaneously.
More linear watt meters, such as bolometers, are too noisy to accurately detect single microwave photons.
We demonstrate a microwave photon-multiplication scheme which combines the advantages of a single photon detector and a power meter by multiplying the incoming photon number by an integer factor.
arXiv Detail & Related papers (2023-03-06T14:42:01Z) - Stepping closer to pulsed single microwave photon detectors for axions
search [0.0]
Axions detection requires the ultimate sensitivity down to the single photon limit.
We follow two promising approaches that both rely on the use of superconducting devices based on the Josephson effect.
Once optimized, both the devices have the potential to reach single photon sensitivity.
arXiv Detail & Related papers (2023-02-15T09:50:34Z) - A highly-sensitive broadband superconducting thermoelectric
single-photon detector [62.997667081978825]
A thermoelectric detector (TED) converts a finite temperature difference caused by the absorption of a single photon into an open circuit thermovoltage.
Our TED is able to reveal single-photons of frequency ranging from about 15 GHz to about 150 PHz depending on the chosen design and materials.
arXiv Detail & Related papers (2023-02-06T17:08:36Z) - Optically heralded microwave photons [1.606071974243323]
A quantum network that distributes and processes entanglement would enable powerful new computers and sensors.
Superconducting qubits operate naturally on microwave photons that have roughly $40,000$ times less energy.
We implement and demonstrate a transducer device that can generate entanglement between optical and microwave photons.
arXiv Detail & Related papers (2022-10-19T17:27:25Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.