Mediated interactions and photon bound states in an exciton-polariton
mixture
- URL: http://arxiv.org/abs/2003.04659v3
- Date: Wed, 13 May 2020 17:18:23 GMT
- Title: Mediated interactions and photon bound states in an exciton-polariton
mixture
- Authors: A. Camacho-Guardian, M. Bastarrachea-Magnani and G. M. Bruun
- Abstract summary: We explore mediated photon-photon interactions in a highly imbalanced two-component mixture of exciton-polaritons in a semiconductor microcavity.
Using a theory that takes into account non-perturbative correlations between the excitons as well as strong light-matter coupling, we demonstrate the high tunability of an effective interaction.
Our findings open up new routes for realising highly non-linear optical materials and novel hybrid light-matter quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quest to realise strongly interacting photons remains an outstanding
challenge both for fundamental science and for applications. Here, we explore
mediated photon-photon interactions in a highly imbalanced two-component
mixture of exciton-polaritons in a semiconductor microcavity. Using a theory
that takes into account non-perturbative correlations between the excitons as
well as strong light-matter coupling, we demonstrate the high tunability of an
effective interaction between quasiparticles formed by minority component
polaritons interacting with a Bose-Einstein condensate (BEC) of a majority
component polaritons. In particular, the interaction, which is mediated by the
exchange of sound modes in the BEC can be made strong enough to support a bound
state of two quasiparticles. Since these quasiparticles consist partly of
photons, this in turn corresponds to a dimer state of photons propagating
through the BEC. This gives rise to a new light transmission line where the
bound state wave function is directly mapped onto correlations between outgoing
photons. Our findings open up new routes for realising highly non-linear
optical materials and novel hybrid light-matter quantum systems.
Related papers
- Collective coupling of driven multilevel atoms and its effect on four-wave mixing [0.0]
We present a systematic analysis of the cooperative effects arising in driven systems composed of multilevel atoms coupled via a common electromagnetic environment.
The dependence of single and two-photon correlations are studied in detail for each region by varying atomic orientations.
It is found that the anisotropy of the dipole-dipole interaction and its wave nature are essential to understand the behavior of the photons correlations.
arXiv Detail & Related papers (2024-04-04T17:36:24Z) - Spectral signature of high-order photon processes mediated by
Cooper-pair pairing [0.0]
Superconducting circuits have almost exclusively operated in the regime where phase fluctuations are smaller than unity.
Superconducting circuits have almost exclusively operated in the regime where phase fluctuations are smaller than unity.
This work explores a new regime of high-order photon interactions in microwave quantum optics, with applications ranging from multi-photon quantum logic to the study of highly correlated microwave radiation.
arXiv Detail & Related papers (2023-12-22T21:29:25Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Correlations between cascaded photons from spatially localized
biexcitons in ZnSe [55.41644538483948]
We demonstrate a radiative cascade from the decay of a biexciton at an impurity-atom complex in aSe quantum well.
Our result establishes impurity atoms inSe as a potential platform for photonic quantum technologies using radiative cascades.
arXiv Detail & Related papers (2022-03-11T23:15:37Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Formation of Matter-Wave Polaritons in an Optical Lattice [0.0]
polariton is a quasiparticle formed by strong coupling of a photon to a matter excitation.
We develop an ultracold-atom analogue of an exciton-polariton system in which interacting polaritonic phases can be studied.
Our work opens up novel possibilities for studies of polaritonic quantum matter.
arXiv Detail & Related papers (2021-09-06T04:46:31Z) - Moir\'e-induced optical non-linearities: Single and multi-photon
resonances [0.0]
Moir'e excitons promise a new platform with which to generate and manipulate hybrid quantum phases of light and matter.
We show that the steady states exhibit a rich phase diagram with pronounced bi-stabilities governed by multi-photon resonances.
In the presence of an incoherent pumping of excitons we find that the system can realise one- and multi-photon lasers.
arXiv Detail & Related papers (2021-08-13T11:47:44Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Universal pair-polaritons in a strongly interacting Fermi gas [0.0]
We report on experiments using molecular transitions in a strongly interacting Fermi gas, directly coupling cavity photons to pairs of atoms.
The dependence of the pair-polariton spectrum on interatomic interactions is universal, independent of the transition used.
This represents a magnification of many-body effects by two orders of magnitude in energy.
arXiv Detail & Related papers (2021-03-03T15:06:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.