PhenoBench -- A Large Dataset and Benchmarks for Semantic Image Interpretation in the Agricultural Domain
- URL: http://arxiv.org/abs/2306.04557v2
- Date: Wed, 24 Jul 2024 12:48:47 GMT
- Title: PhenoBench -- A Large Dataset and Benchmarks for Semantic Image Interpretation in the Agricultural Domain
- Authors: Jan Weyler, Federico Magistri, Elias Marks, Yue Linn Chong, Matteo Sodano, Gianmarco Roggiolani, Nived Chebrolu, Cyrill Stachniss, Jens Behley,
- Abstract summary: We present an annotated dataset and benchmarks for the semantic interpretation of real agricultural fields.
Our dataset recorded with a UAV provides high-quality, pixel-wise annotations of crops and weeds, but also crop leaf instances at the same time.
We provide benchmarks for various tasks on a hidden test set comprised of different fields.
- Score: 29.395926321984565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The production of food, feed, fiber, and fuel is a key task of agriculture, which has to cope with many challenges in the upcoming decades, e.g., a higher demand, climate change, lack of workers, and the availability of arable land. Vision systems can support making better and more sustainable field management decisions, but also support the breeding of new crop varieties by allowing temporally dense and reproducible measurements. Recently, agricultural robotics got an increasing interest in the vision and robotics communities since it is a promising avenue for coping with the aforementioned lack of workers and enabling more sustainable production. While large datasets and benchmarks in other domains are readily available and enable significant progress, agricultural datasets and benchmarks are comparably rare. We present an annotated dataset and benchmarks for the semantic interpretation of real agricultural fields. Our dataset recorded with a UAV provides high-quality, pixel-wise annotations of crops and weeds, but also crop leaf instances at the same time. Furthermore, we provide benchmarks for various tasks on a hidden test set comprised of different fields: known fields covered by the training data and a completely unseen field. Our dataset, benchmarks, and code are available at \url{https://www.phenobench.org}.
Related papers
- AgroGPT: Efficient Agricultural Vision-Language Model with Expert Tuning [30.034193330398292]
We propose an approach to construct instruction-tuning data that harnesses vision-only data for the agriculture domain.
We utilize diverse agricultural datasets spanning multiple domains, curate class-specific information, and employ large language models (LLMs) to construct an expert-tuning set.
We expert-tuned and created AgroGPT, an efficient LMM that can hold complex agriculture-related conversations and provide useful insights.
arXiv Detail & Related papers (2024-10-10T22:38:26Z) - Investigating the Segment Anything Foundation Model for Mapping Smallholder Agriculture Field Boundaries Without Training Labels [0.24966046892475396]
This study explores the Segment Anything Model (SAM) to delineate agricultural field boundaries in Bihar, India.
We evaluate SAM's performance across three model checkpoints, various input sizes, multi-date satellite images, and edge-enhanced imagery.
Using different input image sizes improves accuracy, with the most significant improvement observed when using multi-date satellite images.
arXiv Detail & Related papers (2024-07-01T23:06:02Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Self-Supervised Backbone Framework for Diverse Agricultural Vision Tasks [0.3683202928838613]
Computer vision in agriculture is game-changing to transform farming into a data-driven, precise, and sustainable industry.
Deep learning has empowered agriculture vision to analyze vast, complex visual data, but heavily rely on the availability of large annotated datasets.
We propose a lightweight framework utilizing SimCLR, a contrastive learning approach, to pre-train a ResNet-50 backbone on a large, unannotated dataset of real-world agriculture field images.
arXiv Detail & Related papers (2024-03-22T14:46:51Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - CWD30: A Comprehensive and Holistic Dataset for Crop Weed Recognition in
Precision Agriculture [1.64709990449384]
We present the CWD30 dataset, a large-scale, diverse, holistic, and hierarchical dataset tailored for crop-weed recognition tasks in precision agriculture.
CWD30 comprises over 219,770 high-resolution images of 20 weed species and 10 crop species, encompassing various growth stages, multiple viewing angles, and environmental conditions.
The dataset's hierarchical taxonomy enables fine-grained classification and facilitates the development of more accurate, robust, and generalizable deep learning models.
arXiv Detail & Related papers (2023-05-17T09:39:01Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - The 1st Agriculture-Vision Challenge: Methods and Results [144.57794061346974]
The first Agriculture-Vision Challenge aims to encourage research in developing novel and effective algorithms for agricultural pattern recognition from aerial images.
Around 57 participating teams from various countries compete to achieve state-of-the-art in aerial agriculture semantic segmentation.
This paper provides a summary of notable methods and results in the challenge.
arXiv Detail & Related papers (2020-04-21T05:02:31Z) - Crop Knowledge Discovery Based on Agricultural Big Data Integration [2.597676155371155]
Agricultural data can be generated through various sources, such as: Internet of Thing (IoT), sensors, satellites, weather stations, robots, farm equipment, agricultural laboratories, farmers, government agencies and agribusinesses.
We propose an agricultural data integration method using a constellation schema which is designed to be flexible enough to incorporate other datasets and big data models.
arXiv Detail & Related papers (2020-03-11T00:13:17Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
We present Agriculture-Vision: a large-scale aerial farmland image dataset for semantic segmentation of agricultural patterns.
Each image consists of RGB and Near-infrared (NIR) channels with resolution as high as 10 cm per pixel.
We annotate nine types of field anomaly patterns that are most important to farmers.
arXiv Detail & Related papers (2020-01-05T20:19:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.