Uncertainty depth estimation with gated images for 3D reconstruction
- URL: http://arxiv.org/abs/2003.05122v1
- Date: Wed, 11 Mar 2020 06:00:21 GMT
- Title: Uncertainty depth estimation with gated images for 3D reconstruction
- Authors: Stefanie Walz and Tobias Gruber and Werner Ritter and Klaus Dietmayer
- Abstract summary: Gated imaging is an emerging technology for self-driving cars.
We extend the Gated2Depth framework with aleatoric uncertainty providing an additional confidence measure for the depth estimates.
- Score: 14.51429478464939
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gated imaging is an emerging sensor technology for self-driving cars that
provides high-contrast images even under adverse weather influence. It has been
shown that this technology can even generate high-fidelity dense depth maps
with accuracy comparable to scanning LiDAR systems. In this work, we extend the
recent Gated2Depth framework with aleatoric uncertainty providing an additional
confidence measure for the depth estimates. This confidence can help to filter
out uncertain estimations in regions without any illumination. Moreover, we
show that training on dense depth maps generated by LiDAR depth completion
algorithms can further improve the performance.
Related papers
- CaFNet: A Confidence-Driven Framework for Radar Camera Depth Estimation [6.9404362058736995]
This paper introduces a two-stage, end-to-end trainable Confidence-aware Fusion Net (CaFNet) for dense depth estimation.
The first stage addresses radar-specific challenges, such as ambiguous elevation and noisy measurements.
For the final depth estimation, we innovate a confidence-aware gated fusion mechanism to integrate radar and image features effectively.
arXiv Detail & Related papers (2024-06-30T13:39:29Z) - Uncertainty-guided Optimal Transport in Depth Supervised Sparse-View 3D Gaussian [49.21866794516328]
3D Gaussian splatting has demonstrated impressive performance in real-time novel view synthesis.
Previous approaches have incorporated depth supervision into the training of 3D Gaussians to mitigate overfitting.
We introduce a novel method to supervise the depth distribution of 3D Gaussians, utilizing depth priors with integrated uncertainty estimates.
arXiv Detail & Related papers (2024-05-30T03:18:30Z) - RIDERS: Radar-Infrared Depth Estimation for Robust Sensing [22.10378524682712]
Adverse weather conditions pose significant challenges to accurate dense depth estimation.
We present a novel approach for robust metric depth estimation by fusing a millimeter-wave Radar and a monocular infrared thermal camera.
Our method achieves exceptional visual quality and accurate metric estimation by addressing the challenges of ambiguity and misalignment.
arXiv Detail & Related papers (2024-02-03T07:14:43Z) - Unsupervised confidence for LiDAR depth maps and applications [43.474845978673166]
We propose an effective unsupervised framework aimed at addressing the issue of sparse LiDAR depth maps.
Our framework estimates the confidence of the sparse depth map and thus allows for filtering out the outliers.
We demonstrate how this achievement can improve a wide range of tasks.
arXiv Detail & Related papers (2022-10-06T17:59:58Z) - Gated2Gated: Self-Supervised Depth Estimation from Gated Images [22.415893281441928]
Gated cameras hold promise as an alternative to scanning LiDAR sensors with high-resolution 3D depth.
We propose an entirely self-supervised depth estimation method that uses gated intensity profiles and temporal consistency as a training signal.
arXiv Detail & Related papers (2021-12-04T19:47:38Z) - R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of
Dynamic Scenes [69.6715406227469]
Self-supervised monocular depth estimation in driving scenarios has achieved comparable performance to supervised approaches.
We present R4Dyn, a novel set of techniques to use cost-efficient radar data on top of a self-supervised depth estimation framework.
arXiv Detail & Related papers (2021-08-10T17:57:03Z) - Progressive Depth Learning for Single Image Dehazing [56.71963910162241]
Existing dehazing methods often ignore the depth cues and fail in distant areas where heavier haze disturbs the visibility.
We propose a deep end-to-end model that iteratively estimates image depths and transmission maps.
Our approach benefits from explicitly modeling the inner relationship of image depth and transmission map, which is especially effective for distant hazy areas.
arXiv Detail & Related papers (2021-02-21T05:24:18Z) - Adaptive confidence thresholding for monocular depth estimation [83.06265443599521]
We propose a new approach to leverage pseudo ground truth depth maps of stereo images generated from self-supervised stereo matching methods.
The confidence map of the pseudo ground truth depth map is estimated to mitigate performance degeneration by inaccurate pseudo depth maps.
Experimental results demonstrate superior performance to state-of-the-art monocular depth estimation methods.
arXiv Detail & Related papers (2020-09-27T13:26:16Z) - Self-Attention Dense Depth Estimation Network for Unrectified Video
Sequences [6.821598757786515]
LiDAR and radar sensors are the hardware solution for real-time depth estimation.
Deep learning based self-supervised depth estimation methods have shown promising results.
We propose a self-attention based depth and ego-motion network for unrectified images.
arXiv Detail & Related papers (2020-05-28T21:53:53Z) - Depth Sensing Beyond LiDAR Range [84.19507822574568]
We propose a novel three-camera system that utilizes small field of view cameras.
Our system, along with our novel algorithm for computing metric depth, does not require full pre-calibration.
It can output dense depth maps with practically acceptable accuracy for scenes and objects at long distances.
arXiv Detail & Related papers (2020-04-07T00:09:51Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
We present a new learning-based method for multi-frame depth estimation from a color video.
Our method outperforms the state-of-the-art in terms of depth estimation accuracy.
arXiv Detail & Related papers (2020-04-02T07:10:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.