論文の概要: Technical report: Training Mixture Density Networks with full covariance
matrices
- arxiv url: http://arxiv.org/abs/2003.05739v1
- Date: Wed, 4 Mar 2020 17:52:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 13:28:15.900840
- Title: Technical report: Training Mixture Density Networks with full covariance
matrices
- Title(参考訳): 技術報告:完全共分散行列を用いた混合密度ネットワークの訓練
- Authors: Jakob Kruse
- Abstract要約: MDNはいくつかの入力を受け取り、混合成分の共分散を制限するガウス混合モデルのパラメータを出力する。
確率変数間の共分散は、我々が検討していた条件付きモデリング問題の中心的な問題であるため、制約のない共分散を持つMDNの定式化を導出し実装した。
この技術的報告の形で私のアプローチを文書化し、同様の状況に直面する他の人たちにとって有用であることを期待しています。
- 参考スコア(独自算出の注目度): 3.363127629964748
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Mixture Density Networks are a tried and tested tool for modelling
conditional probability distributions. As such, they constitute a great
baseline for novel approaches to this problem. In the standard formulation, an
MDN takes some input and outputs parameters for a Gaussian mixture model with
restrictions on the mixture components' covariance. Since covariance between
random variables is a central issue in the conditional modeling problems we
were investigating, I derived and implemented an MDN formulation with
unrestricted covariances. It is likely that this has been done before, but I
could not find any resources online. For this reason, I have documented my
approach in the form of this technical report, in hopes that it may be useful
to others facing a similar situation.
- Abstract(参考訳): 混合密度ネットワークは条件付き確率分布をモデル化する試みとテストのツールである。
そのため、これらはこの問題に対する新しいアプローチの基盤となる。
標準定式化では、MDNはいくつかの入力を受け取り、混合成分の共分散を制限するガウス混合モデルのパラメータを出力する。
確率変数間の共分散は、我々が検討していた条件付きモデリング問題の中心的な問題であるため、制約のない共分散を持つMDNの定式化を導出し実装した。
これは以前行われたことと思われるが、オンラインでのリソースは見つからなかった。
この理由から、同様の状況に直面する他の人たちにも役に立つことを願って、この技術レポートの形で私のアプローチを文書化しました。
関連論文リスト
- Fast Semisupervised Unmixing Using Nonconvex Optimization [80.11512905623417]
半/ライブラリベースのアンミックスのための新しい凸凸モデルを提案する。
スパース・アンミキシングの代替手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-01-23T10:07:41Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - Learning Distributions via Monte-Carlo Marginalization [9.131712404284876]
サンプルから抽出可能な分布を学習する新しい手法を提案する。
モンテカルロ・マルギナライゼーション(MCMarg)はこの問題に対処するために提案されている。
提案手法は複雑な分布を学習するための強力なツールであり、プロセス全体が微分可能である。
論文 参考訳(メタデータ) (2023-08-11T19:08:06Z) - Unite and Conquer: Plug & Play Multi-Modal Synthesis using Diffusion
Models [54.1843419649895]
拡散確率モデル(DDPM)に基づく解を提案する。
他の生成モデルよりも拡散モデルを選択する動機は、拡散モデルの柔軟な内部構造に由来する。
提案手法は,複数のサブタスクで訓練された複数の拡散モデルを統一し,組み合わせたタスクを克服する。
論文 参考訳(メタデータ) (2022-12-01T18:59:55Z) - A Penalty Approach for Normalizing Feature Distributions to Build
Confounder-Free Models [11.818509522227565]
MetaData Normalization (MDN) は、学習不能なクローズドフォームソリューションに基づいてメタデータと各特徴の線形関係を推定する。
罰則法(PDMN)を適用してMDN法を拡張した。
MDNによるモデル精度の向上とMDN上のMDNを用いた共同設立者からの独立性の向上を示す。
論文 参考訳(メタデータ) (2022-07-11T04:02:12Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
データから解釈可能な等価性を発見する方法について検討する。
具体的には、モデルのパラメータ共有方式に対する最適化問題として、この発見プロセスを定式化する。
また,ガウスデータの手法を理論的に解析し,研究された発見スキームとオラクルスキームの間の平均2乗ギャップを限定する。
論文 参考訳(メタデータ) (2022-04-07T17:59:19Z) - Joint Probability Estimation Using Tensor Decomposition and Dictionaries [3.4720326275851994]
本研究では, 与えられた離散確率と連続確率変数の連立確率の非パラメトリック推定を, それらの(経験的推定)2次元境界値から検討した。
我々は、データを調べて分布の様々なファミリーの辞書を作成し、それを混合した製品の各分解因子を近似するために利用する。
論文 参考訳(メタデータ) (2022-03-03T11:55:51Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
本稿では、ノイズや非ガウス的なデータに対するデータ計算の欠如に対処する。
楕円分布と潜在的な欠落データを扱う特性を混合した新しいEMアルゴリズムについて検討した。
合成データの実験的結果は,提案アルゴリズムが外れ値に対して頑健であり,非ガウスデータで使用可能であることを示す。
論文 参考訳(メタデータ) (2022-01-28T10:01:37Z) - Re-parameterizing VAEs for stability [1.90365714903665]
本稿では,変分オートエンコーダ(VAE)の数値安定性を訓練するための理論的アプローチを提案する。
我々の研究は、VAEが複雑な画像データセット上のアート生成結果に到達できるようにするための最近の研究によって動機づけられている。
我々は、それらが依存する正規分布のパラメータ化方法に小さな変更を加えることで、VAEを安全にトレーニングできることを示します。
論文 参考訳(メタデータ) (2021-06-25T16:19:09Z) - Variational Mixture of Normalizing Flows [0.0]
生成逆数ネットワークオートサイトGAN、変分オートエンコーダオートサイトベイペーパー、およびそれらの変種などの深い生成モデルは、複雑なデータ分布をモデル化するタスクに広く採用されている。
正規化フローはこの制限を克服し、確率密度関数にそのような公式の変更を利用する。
本研究は,混合モデルのコンポーネントとして正規化フローを用い,そのようなモデルのエンドツーエンドトレーニング手順を考案することによって,この問題を克服する。
論文 参考訳(メタデータ) (2020-09-01T17:20:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。