論文の概要: The Chef's Hat Simulation Environment for Reinforcement-Learning-Based
Agents
- arxiv url: http://arxiv.org/abs/2003.05861v1
- Date: Thu, 12 Mar 2020 15:52:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 14:41:25.041189
- Title: The Chef's Hat Simulation Environment for Reinforcement-Learning-Based
Agents
- Title(参考訳): 強化学習エージェントのためのChef's Hatシミュレーション環境
- Authors: Pablo Barros, Anne C. Bloem, Inge M. Hootsmans, Lena M. Opheij, Romain
H.A. Toebosch, Emilia Barakova and Alessandra Sciutti
- Abstract要約: 本稿では,人間-ロボットインタラクションのシナリオで使用されるように設計されたChef's Hatカードゲームを実装する仮想シミュレーション環境を提案する。
本稿では,強化学習アルゴリズムにおける制御可能かつ再現可能なシナリオを提案する。
- 参考スコア(独自算出の注目度): 54.63186041942257
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: To achieve social interactions within Human-Robot Interaction (HRI)
environments is a very challenging task. Most of the current research focuses
on Wizard-of-Oz approaches, which neglect the recent development of intelligent
robots. On the other hand, real-world scenarios usually do not provide the
necessary control and reproducibility which are needed for learning algorithms.
In this paper, we propose a virtual simulation environment that implements the
Chef's Hat card game, designed to be used in HRI scenarios, to provide a
controllable and reproducible scenario for reinforcement-learning algorithms.
- Abstract(参考訳): 人間-ロボットインタラクション(HRI)環境における社会的相互作用を実現することは、非常に難しい課題である。
現在の研究のほとんどは、最近のインテリジェントロボットの開発を無視したWizard-of-Ozアプローチに焦点を当てている。
一方、現実世界のシナリオは通常、学習アルゴリズムに必要な制御と再現性を提供しない。
本稿では,HRIシナリオで使用されるように設計されたChef's Hatカードゲームを実装した仮想シミュレーション環境を提案し,強化学習アルゴリズムの制御可能な再現可能なシナリオを提供する。
関連論文リスト
- Evaluating Real-World Robot Manipulation Policies in Simulation [91.55267186958892]
実環境と模擬環境の制御と視覚的格差は、信頼性のある模擬評価の鍵となる課題である。
実環境に完全忠実なデジタル双生児を作らなくても、これらのギャップを軽減できる手法を提案する。
シミュレーション環境の集合体であるSIMPLERを作成した。
論文 参考訳(メタデータ) (2024-05-09T17:30:16Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGenはジェネレーティブなロボットエージェントで、ジェネレーティブなシミュレーションを通じて、さまざまなロボットのスキルを自動的に学習する。
我々の研究は、大規模モデルに埋め込まれた広範囲で多目的な知識を抽出し、それらをロボット工学の分野に移す試みである。
論文 参考訳(メタデータ) (2023-11-02T17:59:21Z) - Hybrid ASR for Resource-Constrained Robots: HMM - Deep Learning Fusion [0.0]
本稿では,資源制約型ロボットに特化して設計されたハイブリッド音声認識(ASR)システムを提案する。
提案手法は、隠れマルコフモデル(HMM)とディープラーニングモデルを組み合わせて、ソケットプログラミングを利用して処理タスクを効果的に分散する。
このアーキテクチャでは、HMMベースの処理がロボット内で行われ、別のPCがディープラーニングモデルを処理する。
論文 参考訳(メタデータ) (2023-09-11T15:28:19Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
視覚に基づく人間ロボットハンドオーバの制御ポリシーを学習する最初のフレームワークを提案する。
シミュレーションベンチマーク,sim-to-sim転送,sim-to-real転送において,ベースラインよりも大きな性能向上を示した。
論文 参考訳(メタデータ) (2023-03-30T17:58:36Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Low Dimensional State Representation Learning with Robotics Priors in
Continuous Action Spaces [8.692025477306212]
強化学習アルゴリズムは、エンドツーエンドで複雑なロボティクスタスクを解くことができることが証明されている。
本稿では,ロボットの生の知覚情報から得られる高次元の観察から,低次元状態表現の学習と最適ポリシーの学習を組み合わせた枠組みを提案する。
論文 参考訳(メタデータ) (2021-07-04T15:42:01Z) - Zero-Shot Reinforcement Learning on Graphs for Autonomous Exploration
Under Uncertainty [6.42522897323111]
シミュレーション環境で高性能探査政策を自己学習するための枠組みを提案する。
本稿では,グラフニューラルネットワークと深層強化学習を併用した新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-11T02:42:17Z) - Modular Procedural Generation for Voxel Maps [2.6811189633660613]
本稿では,Minecraft などのボクセル環境を対象とした PCG アルゴリズムの実装を容易にするオープンソースライブラリ mcg を提案する。
この図書館は人間と機械のチーム研究を念頭に設計されており、世代に「トップダウン」なアプローチを採っている。
このアプローチの利点は、仮想環境の迅速でスケーラブルで効率的な開発、セマンティックレベルで環境の統計を制御できる機能、およびプレイヤーのアクションにリアルタイムで応答して新しい環境を生成する機能です。
論文 参考訳(メタデータ) (2021-04-18T16:21:35Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIENは現実的で物理に富んだシミュレートされた環境であり、音声オブジェクトのための大規模なセットをホストしている。
部品検出と動作特性認識のための最先端の視覚アルゴリズムの評価を行い,ロボットインタラクションタスクの実証を行った。
論文 参考訳(メタデータ) (2020-03-19T00:11:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。