論文の概要: Modular Procedural Generation for Voxel Maps
- arxiv url: http://arxiv.org/abs/2104.08890v1
- Date: Sun, 18 Apr 2021 16:21:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-20 14:02:04.743478
- Title: Modular Procedural Generation for Voxel Maps
- Title(参考訳): ボクセルマップのためのモジュール手続き生成
- Authors: Adarsh Pyarelal, Aditya Banerjee, Kobus Barnard
- Abstract要約: 本稿では,Minecraft などのボクセル環境を対象とした PCG アルゴリズムの実装を容易にするオープンソースライブラリ mcg を提案する。
この図書館は人間と機械のチーム研究を念頭に設計されており、世代に「トップダウン」なアプローチを採っている。
このアプローチの利点は、仮想環境の迅速でスケーラブルで効率的な開発、セマンティックレベルで環境の統計を制御できる機能、およびプレイヤーのアクションにリアルタイムで応答して新しい環境を生成する機能です。
- 参考スコア(独自算出の注目度): 2.6811189633660613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task environments developed in Minecraft are becoming increasingly popular
for artificial intelligence (AI) research. However, most of these are currently
constructed manually, thus failing to take advantage of procedural content
generation (PCG), a capability unique to virtual task environments. In this
paper, we present mcg, an open-source library to facilitate implementing PCG
algorithms for voxel-based environments such as Minecraft. The library is
designed with human-machine teaming research in mind, and thus takes a
'top-down' approach to generation, simultaneously generating low and high level
machine-readable representations that are suitable for empirical research.
These can be consumed by downstream AI applications that consider human spatial
cognition. The benefits of this approach include rapid, scalable, and efficient
development of virtual environments, the ability to control the statistics of
the environment at a semantic level, and the ability to generate novel
environments in response to player actions in real time.
- Abstract(参考訳): Minecraftで開発されたタスク環境は、人工知能(AI)研究でますます人気が高まっている。
しかし、これらの多くは現在手動で構築されており、仮想タスク環境特有の機能であるプロシージャコンテンツ生成(PCG)を利用できない。
本稿では,Minecraft などのボクセル環境を対象とした PCG アルゴリズムの実装を容易にするオープンソースライブラリ mcg を提案する。
この図書館は人間と機械の協働研究を念頭に設計されており、したがって「トップダウン」なアプローチで生成し、実証研究に適した低レベルかつ高レベルな機械可読表現を同時に生成する。
これらは、人間の空間認識を考慮した下流AIアプリケーションによって消費される。
このアプローチの利点には、仮想環境の迅速でスケーラブルで効率的な開発、意味レベルで環境の統計を制御できる能力、プレイヤーのアクションにリアルタイムで反応して新しい環境を生成する能力などがある。
関連論文リスト
- EmbodiedCity: A Benchmark Platform for Embodied Agent in Real-world City Environment [38.14321677323052]
身体的人工知能は、エージェントの身体が人間のような行動を引き起こす役割を強調している。
本稿では,実環境におけるインテリジェンス評価のためのベンチマークプラットフォームを構築する。
論文 参考訳(メタデータ) (2024-10-12T17:49:26Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - Arbitrarily Scalable Environment Generators via Neural Cellular Automata [55.150593161240444]
NCA環境ジェネレータは, 環境サイズに関わらず, 整合性, 規則化されたパターンを維持可能であることを示す。
提案手法は,類似したパターンを持つ大規模環境に対して,単エージェント強化学習ポリシーを任意に拡張する。
論文 参考訳(メタデータ) (2023-10-28T07:30:09Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
我々は,エージェントが訓練中に学習する抽象的な検索空間において,エージェントが計画することを可能にする,PiZeroと呼ばれる新しい手法を提案する。
本研究では,旅行セールスマン問題,ソコバン問題,2048年,施設立地問題,パックマン問題など,複数の分野で評価を行った。
論文 参考訳(メタデータ) (2023-08-16T22:47:16Z) - Ghost in the Minecraft: Generally Capable Agents for Open-World
Environments via Large Language Models with Text-based Knowledge and Memory [97.87093169454431]
Ghost in the Minecraft (GITM) は、LLM(Large Language Models)とテキストベースの知識と記憶を統合する新しいフレームワークである。
我々は、構造化されたアクションのセットを開発し、LSMを活用してエージェントが実行するアクションプランを生成する。
LLMをベースとしたエージェントは、従来の手法を著しく上回り、成功率+47.5%という顕著な改善を達成している。
論文 参考訳(メタデータ) (2023-05-25T17:59:49Z) - BEHAVIOR in Habitat 2.0: Simulator-Independent Logical Task Description
for Benchmarking Embodied AI Agents [31.499374840833124]
高速なシミュレーション速度の恩恵を受けるため、Habitat 2.0にBEHAVIORアクティビティのサブセットを組み込む。
ベンチマークがAIの分野で果たした触媒効果に触発されて、コミュニティはエンボディされたAIのための新しいベンチマークを探している。
論文 参考訳(メタデータ) (2022-06-13T21:37:31Z) - Evaluating Continual Learning Algorithms by Generating 3D Virtual
Environments [66.83839051693695]
連続学習とは、人間や動物が特定の環境で徐々に学習する能力である。
本稿では3次元仮想環境の最近の進歩を活用して,フォトリアリスティックな外観を持つ潜在的に長寿命な動的シーンの自動生成にアプローチすることを提案する。
本論文の新たな要素は、シーンがパラメトリックな方法で記述され、エージェントが知覚する入力ストリームの視覚的複雑さを完全に制御できることである。
論文 参考訳(メタデータ) (2021-09-16T10:37:21Z) - Zero-Shot Reinforcement Learning on Graphs for Autonomous Exploration
Under Uncertainty [6.42522897323111]
シミュレーション環境で高性能探査政策を自己学習するための枠組みを提案する。
本稿では,グラフニューラルネットワークと深層強化学習を併用した新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-11T02:42:17Z) - NLPGym -- A toolkit for evaluating RL agents on Natural Language
Processing Tasks [2.5760935151452067]
NLPGymはオープンソースのPythonツールキットで、標準のNLPタスクに対してインタラクティブなテキスト環境を提供する。
研究の基盤となるRLアルゴリズムの異なる6つのタスクについて実験を行った。
論文 参考訳(メタデータ) (2020-11-16T20:58:35Z) - The Chef's Hat Simulation Environment for Reinforcement-Learning-Based
Agents [54.63186041942257]
本稿では,人間-ロボットインタラクションのシナリオで使用されるように設計されたChef's Hatカードゲームを実装する仮想シミュレーション環境を提案する。
本稿では,強化学習アルゴリズムにおける制御可能かつ再現可能なシナリオを提案する。
論文 参考訳(メタデータ) (2020-03-12T15:52:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。