論文の概要: Estimating Basis Functions in Massive Fields under the Spatial Mixed
Effects Model
- arxiv url: http://arxiv.org/abs/2003.05990v1
- Date: Thu, 12 Mar 2020 19:36:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 15:43:07.246103
- Title: Estimating Basis Functions in Massive Fields under the Spatial Mixed
Effects Model
- Title(参考訳): 空間混合効果モデルによる大規模フィールドの基底関数の推定
- Authors: Karl T. Pazdernik and Ranjan Maitra
- Abstract要約: 大規模データセットでは、予測最大化(EM)アルゴリズムを用いた定位クリグが、通常の計算で禁止されるクリグ法に代わるものとして提案されている。
本研究では,空間混合効果(SME)モデルを用いた代替手法を開発したが,観測値と結び目の間の空間依存性の範囲をAECMアルゴリズムを用いて推定することで,さらなる柔軟性を実現することができる。
実験により,予測精度を犠牲にすることなく,余剰パラメータ推定の計算負担を最小化しながら,予測精度の向上を図っている。
- 参考スコア(独自算出の注目度): 8.528384027684194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial prediction is commonly achieved under the assumption of a Gaussian
random field (GRF) by obtaining maximum likelihood estimates of parameters, and
then using the kriging equations to arrive at predicted values. For massive
datasets, fixed rank kriging using the Expectation-Maximization (EM) algorithm
for estimation has been proposed as an alternative to the usual but
computationally prohibitive kriging method. The method reduces computation cost
of estimation by redefining the spatial process as a linear combination of
basis functions and spatial random effects. A disadvantage of this method is
that it imposes constraints on the relationship between the observed locations
and the knots. We develop an alternative method that utilizes the Spatial Mixed
Effects (SME) model, but allows for additional flexibility by estimating the
range of the spatial dependence between the observations and the knots via an
Alternating Expectation Conditional Maximization (AECM) algorithm. Experiments
show that our methodology improves estimation without sacrificing prediction
accuracy while also minimizing the additional computational burden of extra
parameter estimation. The methodology is applied to a temperature data set
archived by the United States National Climate Data Center, with improved
results over previous methodology.
- Abstract(参考訳): 空間予測は、ガウス確率場(grf)の仮定の下で、パラメータの最大確率推定値を得て、kriging方程式を用いて予測値に到達することで、一般的に達成される。
大規模データセットでは、予測最大化(EM)アルゴリズムを用いた定位クリグが、通常の計算禁止クリグ法に代わるものとして提案されている。
基礎関数と空間ランダム効果の線形結合として空間過程を再定義することにより、推定の計算コストを低減する。
この手法の欠点は、観測された位置と結び目との関係に制約を加えることである。
本研究では,空間混合効果(SME)モデルを用いた代替手法を開発したが,観測値と結び目の間の空間依存性の範囲をAECMアルゴリズムを用いて推定することで,さらなる柔軟性を実現することができる。
実験により,予測精度を犠牲にすることなく,余剰パラメータ推定の計算負担を最小化しながら,予測精度の向上を図っている。
この手法は、アメリカ合衆国国立気候データセンターがアーカイブした温度データセットに適用され、以前の方法よりも優れた結果が得られる。
関連論文リスト
- Eliminating Ratio Bias for Gradient-based Simulated Parameter Estimation [0.7673339435080445]
本稿では、可能性関数が解析的に利用できないモデルにおけるパラメータキャリブレーションの課題に対処する。
本稿では,最大推定と後続密度推定の両問題において,比バイアスの問題に対処するマルチタイムスケールを応用した勾配に基づくシミュレーションパラメータ推定フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-20T02:46:15Z) - Amortized Bayesian Local Interpolation NetworK: Fast covariance parameter estimation for Gaussian Processes [0.04660328753262073]
高速な共分散パラメータ推定のための補正ベイズ局所補間ネットWorKを提案する。
これらのネットワークの高速な予測時間により、行列の反転ステップをバイパスし、大きな計算スピードアップを発生させることができる。
拡張性のあるGP手法に比べて計算効率が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-11-10T01:26:16Z) - Iterative Methods for Full-Scale Gaussian Process Approximations for Large Spatial Data [9.913418444556486]
本稿では, FSAを用いた確率, 勾配, 予測分布の計算コストの削減に, 反復法をどのように利用できるかを示す。
また,推定法や反復法に依存する予測分散を計算する新しい,正確かつ高速な手法を提案する。
すべてのメソッドは、ハイレベルなPythonとRパッケージを備えたフリーのC++ソフトウェアライブラリで実装されている。
論文 参考訳(メタデータ) (2024-05-23T12:25:22Z) - Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels [78.6096486885658]
線形化されたラプラス近似に下界を導入する。
これらの境界は漸進的な最適化が可能であり、推定精度と計算複雑性とのトレードオフを可能にする。
論文 参考訳(メタデータ) (2023-06-06T19:02:57Z) - Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood
Estimation [2.53740603524637]
我々は,最大限界推定法を実装するための相互作用粒子系のクラスを開発する。
特に、この拡散の定常測度のパラメータ境界がギブス測度の形式であることを示す。
特定の再スケーリングを用いて、このシステムの幾何学的エルゴディディティを証明し、離散化誤差を限定する。
時間的に一様で、粒子の数で増加しない方法で。
論文 参考訳(メタデータ) (2023-03-23T16:50:08Z) - Gaussian process regression and conditional Karhunen-Lo\'{e}ve models
for data assimilation in inverse problems [68.8204255655161]
偏微分方程式モデルにおけるデータ同化とパラメータ推定のためのモデル逆アルゴリズムCKLEMAPを提案する。
CKLEMAP法は標準的なMAP法に比べてスケーラビリティがよい。
論文 参考訳(メタデータ) (2023-01-26T18:14:12Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
関数型隠れ統計モデル(f-HD)のためのペナル化極大推定器(PMLE)に基づく新しいモデル選択アルゴリズムを提案する。
このアルゴリズムは反復最適化に基づいており、適応最小限の収縮・セレクタ演算子(GMSOLAS)ペナルティ関数を用いており、これは不給付のf-HD最大線量推定器によって得られる。
論文 参考訳(メタデータ) (2022-08-10T19:17:45Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
ガウスのプロセスはデータセットのサイズとともに違法にスケールする。
多くの近似法が開発されており、必然的に近似誤差を導入している。
この余分な不確実性の原因は、計算が限られているため、近似後部を使用すると完全に無視される。
本研究では,観測された有限個のデータと有限個の計算量の両方から生じる組合せ不確実性を一貫した推定を行う手法の開発を行う。
論文 参考訳(メタデータ) (2022-05-30T22:16:25Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - The Shooting Regressor; Randomized Gradient-Based Ensembles [0.0]
ランダム化と損失関数勾配を利用して予測を計算するアンサンブル法を提案する。
複数の弱相関推定器は、誤差面上のランダムにサンプリングされた点の勾配を近似し、最終解に集約する。
論文 参考訳(メタデータ) (2020-09-14T03:20:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。