QuNetSim: A Software Framework for Quantum Networks
- URL: http://arxiv.org/abs/2003.06397v5
- Date: Wed, 23 Jun 2021 12:58:11 GMT
- Title: QuNetSim: A Software Framework for Quantum Networks
- Authors: Stephen DiAdamo, Janis N\"otzel, Benjamin Zanger, Mehmet Mert Be\c{s}e
- Abstract summary: QuNetSim is a Python software framework that can be used to simulate quantum networks up to the network layer.
The framework incorporates many known quantum network protocols so that users can quickly build simulations and beginners can easily learn to implement their own quantum networking protocols.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As quantum internet technologies develop, the need for simulation software
and education for quantum internet rises. QuNetSim aims to fill this need.
QuNetSim is a Python software framework that can be used to simulate quantum
networks up to the network layer. The goal of QuNetSim is to make it easier to
investigate and test quantum networking protocols over various quantum network
configurations and parameters. The framework incorporates many known quantum
network protocols so that users can quickly build simulations and beginners can
easily learn to implement their own quantum networking protocols.
Related papers
- A Web-based Software Development Kit for Quantum Network Simulation [0.29465623430708915]
There is limited traction towards building a quantum networking community.
Our Quantum Network Development Kit (QNDK) project aims to solve these issues.
It includes a graphical user interface to easily develop and run quantum network simulations with very little code.
arXiv Detail & Related papers (2024-08-10T16:15:13Z) - Reconfigurable Quantum Internet Service Provider [13.854695863568166]
We demonstrate the concept of quantum internet service provider (QISP)
We construct a reconfigurable QISP comprising both the quantum hardware and classical control software.
Our experiment demonstrates the robust capabilities of the QISP.
arXiv Detail & Related papers (2023-05-15T22:19:00Z) - Quantum NETwork: from theory to practice [9.506954148435801]
We aim to provide an up-to-date review of the field of quantum networks from both theoretical and experimental perspectives.
We introduce a newly developed quantum network toolkit to facilitate the exploration and evaluation of innovative ideas.
arXiv Detail & Related papers (2022-12-02T15:05:25Z) - Parallel Simulation of Quantum Networks with Distributed Quantum State
Management [56.24769206561207]
We identify requirements for parallel simulation of quantum networks and develop the first parallel discrete event quantum network simulator.
Our contributions include the design and development of a quantum state manager that maintains shared quantum information distributed across multiple processes.
We release the parallel SeQUeNCe simulator as an open-source tool alongside the existing sequential version.
arXiv Detail & Related papers (2021-11-06T16:51:17Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - A P4 Data Plane for the Quantum Internet [68.97335984455059]
A new -- quantum -- network stack will be needed to account for the fundamentally new properties of quantum entanglement.
In the non-quantum world, programmable data planes have broken the pattern of ossification of the protocol stack.
We demonstrate how we use P4$_16$ to explore abstractions and device architectures for quantum networks.
arXiv Detail & Related papers (2020-10-21T19:37:23Z) - SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks [53.56179714852967]
This work develops SeQUeNCe, a comprehensive, customizable quantum network simulator.
We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories.
We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
arXiv Detail & Related papers (2020-09-25T01:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.