論文の概要: Quantum cryptography: Public key distribution and coin tossing
- arxiv url: http://arxiv.org/abs/2003.06557v1
- Date: Sat, 14 Mar 2020 05:15:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-29 04:20:46.336557
- Title: Quantum cryptography: Public key distribution and coin tossing
- Title(参考訳): 量子暗号:公開鍵分布とコイントス
- Authors: Charles H. Bennett and Gilles Brassard
- Abstract要約: 不確実性原理は、従来の伝送媒体では達成できない新しい暗号現象を引き起こす。
本稿では、従来の不正行為に対して安全である量子メッセージの交換によるコイントスキングのプロトコルを提案する。
皮肉にも、まだ微妙な量子現象であるアインシュタイン-ポドルスキー-ローゼンパラドックスを用いることで、転化することができる。
- 参考スコア(独自算出の注目度): 0.3655021726150368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When elementary quantum systems, such as polarized photons, are used to
transmit digital information, the uncertainty principle gives rise to novel
cryptographic phenomena unachievable with traditional transmission media, e.g.
a communications channel on which it is impossible in principle to eavesdrop
without a high probability of disturbing the transmission in such a way as to
be detected. Such a quantum channel can be used in conjunction with ordinary
insecure classical channels to distribute random key information between two
users with the assurance that it remains unknown to anyone else, even when the
users share no secret information initially. We also present a protocol for
coin-tossing by exchange of quantum messages, which is secure against
traditional kinds of cheating, even by an opponent with unlimited computing
power, but ironically can be subverted by use of a still subtler quantum
phenomenon, the Einstein-Podolsky-Rosen paradox.
- Abstract(参考訳): 偏光子などの基本量子系がデジタル情報を伝送する際、不確実性原理は従来の伝送媒体では実現不可能な新しい暗号現象を引き起こす。
このような量子チャネルは、通常の安全でない古典的なチャネルと組み合わせて、2人のユーザ間でランダムな鍵情報を分散し、ユーザが当初秘密情報を共有していない場合でも、それが誰にでも未知であることを保証する。
また,従来の不正行為に対して,無制限の計算能力を持つ相手であっても安全な量子メッセージ交換によるコイントスのプロトコルを提案するが,アインシュタイン・ポドルスキー・ローゼン・パラドックスという微妙な量子現象を用いることで皮肉なことに逆転できる。
関連論文リスト
- Unconditionally secure key distribution without quantum channel [0.76146285961466]
現在、量子スキームは、無条件でセキュアな鍵分布を達成するための唯一の既知の方法である。
固定鍵率と秘密鍵率とを両立させる非条件鍵分布方式,すなわち確率鍵分布を提案する。
非局所的絡み合った状態は、同等の仮想プロトコルで生成、識別、測定することができ、秘密鍵の抽出に使用できる。
論文 参考訳(メタデータ) (2024-08-24T15:13:14Z) - Orthogonality Broadcasting and Quantum Position Verification [3.549868541921029]
量子暗号プロトコルのセキュリティは、特定の量子状態に符号化された古典的な情報が放送できないという潜在的に弱い性質に由来する。
直交放送」の研究を紹介する。
論文 参考訳(メタデータ) (2023-11-01T17:37:20Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
我々は、量子力学の非閉鎖原理に基づいて、キー呼び出し機能を備えた暗号スキームを設計する。
我々は、シークレットキーが量子状態として表現されるスキームを、シークレットキーが一度ユーザから取り消されたら、それらが以前と同じ機能を実行する能力を持たないことを保証して検討する。
論文 参考訳(メタデータ) (2023-02-28T18:58:11Z) - Semantic Security with Infinite Dimensional Quantum Eavesdropping Channel [1.5070870469725095]
本稿では,ワイヤタップチャネルの直接符号化定理の証明法を提案する。
この方法はブロック長の増加とともに指数関数的に減衰する誤差を生じる。
セマンティックセキュリティの量子バージョンを保証する。
論文 参考訳(メタデータ) (2022-05-16T13:25:56Z) - Classical analogue of quantum superdense coding and communication advantage of a single quantum system [0.0]
古典的共有ランダム性の助けのないキュービット通信は,その目的を達成することができることを示す。
また、対称多角形状態空間によって記述された古典的でない玩具類の通信ユーティリティについても検討する。
論文 参考訳(メタデータ) (2022-02-14T15:29:59Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
我々は、セキュアな古典的リピータと量子セキュアな直接通信原理を組み合わせた量子ネットワークを考案する。
これらのネットワークでは、量子耐性アルゴリズムから引き出された暗号文を、ノードに沿ってQSDCを用いて送信する。
我々は,セキュアな古典的リピータに基づくハイブリッド量子ネットワークの実証実験を行った。
論文 参考訳(メタデータ) (2022-02-08T03:24:06Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
古典的アリス(Alice)と量子的ボブ(Quantum Bob)が古典的なチャネルを通してのみ通信できるような設定を考える。
悪質な量子逆数の場合,ブラックボックスシミュレーションを用いた2次元量子関数を実現することは,一般に不可能であることを示す。
我々は、QMA関係Rの古典的量子知識(PoQK)プロトコルを入力として、古典的当事者によって検証可能なRのゼロ知識PoQKを出力するコンパイラを提供する。
論文 参考訳(メタデータ) (2020-10-15T17:55:31Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
ノイズチャネルの多くの用途でメッセージを確実に送信するために、回路をエンコードしてデコードする。
すべての量子チャネル$T$とすべての$eps>0$に対して、以下に示すゲートエラー確率のしきい値$p(epsilon,T)$が存在し、$C-epsilon$より大きいレートはフォールトトレラント的に達成可能である。
我々の結果は、遠方の量子コンピュータが高レベルのノイズの下で通信する必要があるような、大きな距離での通信やオンチップでの通信に関係している。
論文 参考訳(メタデータ) (2020-09-15T15:10:50Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
複数のユニキャスト量子ネットワーク上でセキュアな量子ネットワークコードを導出する正準法を提案する。
我々のコードは攻撃がないときに量子状態を正しく送信する。
また、攻撃があっても送信された量子状態の秘密性を保証する。
論文 参考訳(メタデータ) (2020-03-30T09:25:13Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
量子情報処理におけるノイズは、特に短期的な量子技術において、破壊的で避け難い特徴と見なされることが多い。
量子回路の非偏極雑音を利用して分類を行うことにより、敵に縛られるロバスト性を導出できることを示す。
これは、最も一般的な敵に対して使用できる最初の量子プロトコルである。
論文 参考訳(メタデータ) (2020-03-20T17:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。