論文の概要: Multi-view Self-Constructing Graph Convolutional Networks with Adaptive
Class Weighting Loss for Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2004.10327v1
- Date: Tue, 21 Apr 2020 22:18:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 07:14:19.978399
- Title: Multi-view Self-Constructing Graph Convolutional Networks with Adaptive
Class Weighting Loss for Semantic Segmentation
- Title(参考訳): セマンティックセグメンテーションのための適応型クラス重み付き多視点自己構築グラフ畳み込みネットワーク
- Authors: Qinghui Liu, Michael Kampffmeyer, Robert Jenssen, Arnt-B{\o}rre
Salberg
- Abstract要約: セマンティックセグメンテーションのためのMulti-view Self-Constructing Graph Convolutional Networks (MSCG-Net) と呼ばれる新しいアーキテクチャを提案する。
航空機画像の回転不変性を明確に活用するために,複数のビューを利用する。
提案手法の有効性と柔軟性を農業ビジョン課題に適用し,競争力のある結果が得られることを示す。
- 参考スコア(独自算出の注目度): 23.623276007011373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel architecture called the Multi-view Self-Constructing Graph
Convolutional Networks (MSCG-Net) for semantic segmentation. Building on the
recently proposed Self-Constructing Graph (SCG) module, which makes use of
learnable latent variables to self-construct the underlying graphs directly
from the input features without relying on manually built prior knowledge
graphs, we leverage multiple views in order to explicitly exploit the
rotational invariance in airborne images. We further develop an adaptive class
weighting loss to address the class imbalance. We demonstrate the effectiveness
and flexibility of the proposed method on the Agriculture-Vision challenge
dataset and our model achieves very competitive results (0.547 mIoU) with much
fewer parameters and at a lower computational cost compared to related pure-CNN
based work. Code will be available at: github.com/samleoqh/MSCG-Net
- Abstract(参考訳): セマンティックセグメンテーションのためのMulti-view Self-Constructing Graph Convolutional Networks (MSCG-Net) と呼ばれる新しいアーキテクチャを提案する。
最近提案された自己構築グラフ(SCG)モジュールをベースとして,学習可能な潜伏変数を用いて,手動で構築した事前知識グラフに頼ることなく,入力機能から直接グラフを自己構築する。
さらに,クラス不均衡に対処するための適応型クラス重み付け損失も開発する。
提案手法の有効性と柔軟性を農耕・農耕課題データセットに示すとともに,本モデルでは,パラメータの少ない競争結果(0.547 mIoU)を,関連する純CNNベースの作業と比較して計算コストの低い方法で達成する。
コードはgithub.com/samleoqh/mscg-netで入手できる。
関連論文リスト
- Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Graph Neural Network with Curriculum Learning for Imbalanced Node
Classification [21.085314408929058]
グラフニューラルネットワーク(GNN)は,ノード分類などのグラフベースの学習タスクの新興技術である。
本研究では,ノードラベルの不均衡に対するGNNの脆弱性を明らかにする。
本稿では,2つのモジュールからなるカリキュラム学習(GNN-CL)を備えたグラフニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-05T10:46:11Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
グラフ畳み込みネットワークは、構造化されたデータポイント間の関係をキャプチャするための最も有望なアプローチである。
マルチタスク方式でグラフベースニューラルネットワークモデルを学習するための3つの新しい自己教師付き補助タスクを提案する。
論文 参考訳(メタデータ) (2020-11-14T11:09:51Z) - SCG-Net: Self-Constructing Graph Neural Networks for Semantic
Segmentation [23.623276007011373]
本稿では,画像から直接長距離依存グラフを学習し,コンテキスト情報を効率的に伝達するモジュールを提案する。
モジュールは、新しい適応対角法と変分下界により最適化される。
ニューラルネットワーク(SCG-Net)に組み込まれると、セマンティックセグメンテーションがエンドツーエンドで行われ、競争性能が向上する。
論文 参考訳(メタデータ) (2020-09-03T12:13:09Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Self-Constructing Graph Convolutional Networks for Semantic Labeling [23.623276007011373]
本稿では,学習可能な潜伏変数を用いて埋め込みを生成する自己構築グラフ(SCG)を提案する。
SCGは、空中画像中の複雑な形状の物体から、最適化された非局所的なコンテキストグラフを自動的に取得することができる。
本稿では,ISPRS Vaihingen データセット上で提案した SCG の有効性と柔軟性を示す。
論文 参考訳(メタデータ) (2020-03-15T21:55:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。