論文の概要: LASE: Learned Adjacency Spectral Embeddings
- arxiv url: http://arxiv.org/abs/2412.17734v1
- Date: Mon, 23 Dec 2024 17:35:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:00:37.887952
- Title: LASE: Learned Adjacency Spectral Embeddings
- Title(参考訳): LASE: 隣接スペクトル埋め込みを学習
- Authors: Sofía Pérez Casulo, Marcelo Fiori, Federico Larroca, Gonzalo Mateos,
- Abstract要約: グラフ入力から結節隣接スペクトル埋め込み(ASE)を学習する。
LASEは解釈可能で、パラメータ効率が高く、未観測のエッジを持つ入力に対して堅牢である。
LASEレイヤは、Graph Convolutional Network (GCN)と完全に接続されたGraph Attention Network (GAT)モジュールを組み合わせる。
- 参考スコア(独自算出の注目度): 7.612218105739107
- License:
- Abstract: We put forth a principled design of a neural architecture to learn nodal Adjacency Spectral Embeddings (ASE) from graph inputs. By bringing to bear the gradient descent (GD) method and leveraging the principle of algorithm unrolling, we truncate and re-interpret each GD iteration as a layer in a graph neural network (GNN) that is trained to approximate the ASE. Accordingly, we call the resulting embeddings and our parametric model Learned ASE (LASE), which is interpretable, parameter efficient, robust to inputs with unobserved edges, and offers controllable complexity during inference. LASE layers combine Graph Convolutional Network (GCN) and fully-connected Graph Attention Network (GAT) modules, which is intuitively pleasing since GCN-based local aggregations alone are insufficient to express the sought graph eigenvectors. We propose several refinements to the unrolled LASE architecture (such as sparse attention in the GAT module and decoupled layerwise parameters) that offer favorable approximation error versus computation tradeoffs; even outperforming heavily-optimized eigendecomposition routines from scientific computing libraries. Because LASE is a differentiable function with respect to its parameters as well as its graph input, we can seamlessly integrate it as a trainable module within a larger (semi-)supervised graph representation learning pipeline. The resulting end-to-end system effectively learns ``discriminative ASEs'' that exhibit competitive performance in supervised link prediction and node classification tasks, outperforming a GNN even when the latter is endowed with open loop, meaning task-agnostic, precomputed spectral positional encodings.
- Abstract(参考訳): グラフ入力から結節隣接スペクトル埋め込み(ASE)を学習するためのニューラルネットワークの設計を行った。
アルゴリズムのアンローリングの原理を生かした勾配降下法(GD)を導入し,各GD反復を,ASEを近似するために訓練されたグラフニューラルネットワーク(GNN)の層として再解釈する。
そこで我々は,提案した埋め込みとパラメトリックモデルであるLearned ASE (LASE) を,解釈可能で,パラメータ効率が高く,未観測のエッジを持つ入力に対して堅牢であり,推論中に制御可能な複雑性を提供する。
LASE 層は Graph Convolutional Network (GCN) と完全連結 Graph Attention Network (GAT) モジュールを組み合わせる。
本稿では,GATモジュールにおける疎度な注意や,計算トレードオフに対する近似誤差を提供するレイヤワイドパラメータなどの)非ロール型LASEアーキテクチャの改良について提案する。
LASEはそのパラメータとグラフ入力に関して微分可能な関数であるため、より大きな(半)教師付きグラフ表現学習パイプライン内でトレーニング可能なモジュールとしてシームレスに統合できる。
結果として得られたエンドツーエンドシステムは、教師付きリンク予測とノード分類タスクにおいて競合する性能を示す ``discriminative ASEs'' を効果的に学習し、後者がオープンループを付与された場合でも、GNNより優れている。
関連論文リスト
- Scalable Graph Compressed Convolutions [68.85227170390864]
ユークリッド畳み込みのための入力グラフのキャリブレーションに置換を適用する微分可能手法を提案する。
グラフキャリブレーションに基づいて,階層型グラフ表現学習のための圧縮畳み込みネットワーク(CoCN)を提案する。
論文 参考訳(メタデータ) (2024-07-26T03:14:13Z) - Efficient Graph Similarity Computation with Alignment Regularization [7.143879014059894]
グラフ類似性計算(GSC)は、グラフニューラルネットワーク(GNN)を用いた学習に基づく予測タスクである。
適応正規化(AReg)と呼ばれる,シンプルながら強力な正規化技術によって,高品質な学習が達成可能であることを示す。
推論段階では、GNNエンコーダによって学習されたグラフレベル表現は、ARegを再度使用せずに直接類似度スコアを計算するために使用される。
論文 参考訳(メタデータ) (2024-06-21T07:37:28Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - AGNN: Alternating Graph-Regularized Neural Networks to Alleviate
Over-Smoothing [29.618952407794776]
グラフ畳み込み層(GCL)とグラフ埋め込み層(GEL)からなる交代グラフ正規化ニューラルネットワーク(AGNN)を提案する。
GELはラプラシアン埋め込み項を含むグラフ正規化最適化から導かれる。
AGNNは、いくつかの多層または多次グラフニューラルネットワークのパフォーマンス比較を含む、多数の実験を通じて評価されている。
論文 参考訳(メタデータ) (2023-04-14T09:20:03Z) - Learnable Graph Convolutional Attention Networks [7.465923786151107]
グラフニューラルネットワーク(GNN)は、ノード間のメッセージ交換を、隣接するすべてのノードの特徴を均一に(関連する)集約するか、あるいは特徴に一様でないスコア(動作)を適用することによって計算する。
最近の研究は、それぞれGCNとGATのGNNアーキテクチャの長所と短所を示している。
本稿では、注目スコアを計算するために、畳み込みに依存するグラフ畳み込みアテンション層(CAT)を紹介する。
以上の結果から,L-CATはネットワーク上の異なるGNN層を効率よく結合し,競合する手法よりも広い範囲で優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2022-11-21T21:08:58Z) - Self-Supervised Graph Structure Refinement for Graph Neural Networks [31.924317784535155]
グラフ構造学習(GSL)はグラフニューラルネットワーク(GNN)の隣接行列の学習を目的としている
既存のGSLの作業の多くは、推定隣接行列とGNNパラメータを下流タスクに最適化した共同学習フレームワークを適用している。
プレトレイン-ファインチューンパイプラインを用いたグラフ構造改善(GSR)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-12T02:01:46Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - Self-Constructing Graph Convolutional Networks for Semantic Labeling [23.623276007011373]
本稿では,学習可能な潜伏変数を用いて埋め込みを生成する自己構築グラフ(SCG)を提案する。
SCGは、空中画像中の複雑な形状の物体から、最適化された非局所的なコンテキストグラフを自動的に取得することができる。
本稿では,ISPRS Vaihingen データセット上で提案した SCG の有効性と柔軟性を示す。
論文 参考訳(メタデータ) (2020-03-15T21:55:24Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
グラフ自動エンコーダ(GAE)モデルは、半教師付きグラフ畳み込みネットワーク(GCN)に基づく
我々は、グラフクラスタリングのための特定のGAEベースのモデルを設計し、その理論、すなわち、埋め込みグラフオートエンコーダ(EGAE)と整合する。
EGAEは1つのエンコーダと2つのデコーダで構成される。
論文 参考訳(メタデータ) (2020-02-20T09:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。