論文の概要: Learnergy: Energy-based Machine Learners
- arxiv url: http://arxiv.org/abs/2003.07443v2
- Date: Wed, 23 Sep 2020 15:39:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-23 02:27:43.184855
- Title: Learnergy: Energy-based Machine Learners
- Title(参考訳): learnergy: エネルギーベースの機械学習
- Authors: Mateus Roder, Gustavo Henrique de Rosa, Jo\~ao Paulo Papa
- Abstract要約: ディープラーニングアーキテクチャの文脈では、機械学習技術が広く推奨されている。
制限ボルツマンマシン(Restricted Boltzmann Machine)と呼ばれるエキサイティングなアルゴリズムは、分類、再構成、画像と信号の生成など、最も多様な応用に取り組むために、エネルギーと確率に基づく性質に依存している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Throughout the last years, machine learning techniques have been broadly
encouraged in the context of deep learning architectures. An exciting algorithm
denoted as Restricted Boltzmann Machine relies on energy- and
probabilistic-based nature to tackle the most diverse applications, such as
classification, reconstruction, and generation of images and signals.
Nevertheless, one can see they are not adequately renowned compared to other
well-known deep learning techniques, e.g., Convolutional Neural Networks. Such
behavior promotes the lack of researches and implementations around the
literature, coping with the challenge of sufficiently comprehending these
energy-based systems. Therefore, in this paper, we propose a Python-inspired
framework in the context of energy-based architectures, denoted as Learnergy.
Essentially, Learnergy is built upon PyTorch to provide a more friendly
environment and a faster prototyping workspace and possibly the usage of CUDA
computations, speeding up their computational time.
- Abstract(参考訳): 過去数年間、ディープラーニングアーキテクチャのコンテキストにおいて、機械学習技術は広く奨励されてきた。
制限ボルツマンマシンと呼ばれるエキサイティングなアルゴリズムは、画像や信号の分類、再構成、生成など、最も多様な応用に取り組むためにエネルギーと確率に基づく性質に依存している。
それでも、他のよく知られたディープラーニング技術、例えば畳み込みニューラルネットワークと比較すると、十分に有名ではないことが分かる。
このような行動は、文献に関する研究や実装の欠如を助長し、これらのエネルギーベースのシステムを十分に理解することの難題に対処している。
そこで本稿では,pythonにインスパイアされたフレームワークをエネルギーベースのアーキテクチャの文脈で提案する。
基本的にLearnergyは、PyTorch上に構築されており、よりフレンドリーな環境とより高速なプロトタイピングワークスペース、そしておそらくCUDA計算の利用を提供し、計算時間を短縮する。
関連論文リスト
- From Computation to Consumption: Exploring the Compute-Energy Link for Training and Testing Neural Networks for SED Systems [9.658615045493734]
本稿では,音事象検出システムの主要なコンポーネントであるニューラルネットワークアーキテクチャについて検討する。
我々は,小規模から大規模アーキテクチャの訓練および試験におけるエネルギー消費量を測定した。
我々は,エネルギー消費,浮動小数点演算数,パラメータ数,GPU/メモリ利用率の複雑な関係を確立する。
論文 参考訳(メタデータ) (2024-09-08T12:51:34Z) - The Potential of Combined Learning Strategies to Enhance Energy Efficiency of Spiking Neuromorphic Systems [0.0]
この原稿は、畳み込みスパイキングニューラルネットワーク(CSNN)のための新しい複合学習アプローチを通じて、脳にインスパイアされた知覚コンピュータマシンの強化に焦点を当てている。
CSNNは、人間の脳にインスパイアされたエネルギー効率の良いスパイクニューロン処理を提供する、バックプロパゲーションのような従来のパワー集約的で複雑な機械学習手法に代わる、有望な代替手段を提供する。
論文 参考訳(メタデータ) (2024-08-13T18:40:50Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Deep Photonic Reservoir Computer for Speech Recognition [49.1574468325115]
音声認識は人工知能の分野で重要な課題であり、目覚ましい進歩を目撃してきた。
深い貯水池コンピューティングはエネルギー効率が高いが、よりリソース集約的な機械学習アルゴリズムと比較して、パフォーマンスに制限がある。
フォトニック方式の深層貯水池コンピュータを提案し,その性能を音声認識タスクで評価する。
論文 参考訳(メタデータ) (2023-12-11T17:43:58Z) - Energy Estimates Across Layers of Computing: From Devices to Large-Scale
Applications in Machine Learning for Natural Language Processing, Scientific
Computing, and Cryptocurrency Mining [0.0]
デバイスからアルゴリズムに至るまでの計算層におけるエネルギー使用量の推定と分析を行った。
人工知能(AI)/Machine Learning for Natural Language Processing、Scientific Simulations、Cryptocurrency Miningの3つの大規模コンピューティング応用が推定されている。
論文 参考訳(メタデータ) (2023-10-11T14:14:05Z) - Energy Transformer [64.22957136952725]
我々の研究は、機械学習における有望な3つのパラダイム、すなわち注意機構、エネルギーベースモデル、連想記憶の側面を組み合わせる。
本稿では,エネルギー変換器(ET,Energy Transformer)と呼ばれる新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-14T18:51:22Z) - Energy Consumption of Neural Networks on NVIDIA Edge Boards: an
Empirical Model [6.809944967863927]
近年、レイテンシの低減とデータプライバシの保護のために、ディープラーニング推論タスクの実行を、ユーザに近いネットワークのエッジにシフトする傾向があります。
本研究では,現代のエッジノードにおける推論タスクのエネルギ消費をプロファイリングすることを目的とする。
そこで我々は, 検討ボード上である推論タスクのエネルギー消費を推定できる, 単純で実用的なモデルを構築した。
論文 参考訳(メタデータ) (2022-10-04T14:12:59Z) - Flashlight: Enabling Innovation in Tools for Machine Learning [50.63188263773778]
私たちは、機械学習ツールやシステムの革新を促進するために構築されたオープンソースのライブラリであるFlashlightを紹介します。
Flashlightは、広く使われているライブラリを下流で活用し、機械学習とシステム研究者をより緊密に連携させる研究を可能にするツールだと考えています。
論文 参考訳(メタデータ) (2022-01-29T01:03:29Z) - Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges [50.22269760171131]
過去10年間、データサイエンスと機械学習の実験的な革命が、ディープラーニングの手法によって生まれた。
このテキストは、統一幾何学的原理によって事前に定義された規則性を公開することに関するものである。
CNN、RNN、GNN、Transformersなど、最も成功したニューラルネットワークアーキテクチャを研究するための一般的な数学的フレームワークを提供する。
論文 参考訳(メタデータ) (2021-04-27T21:09:51Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Resource-Efficient Neural Networks for Embedded Systems [23.532396005466627]
本稿では,機械学習技術の現状について概説する。
私たちは、過去10年で主要な機械学習モデルであるディープニューラルネットワーク(DNN)に基づく、リソース効率の高い推論に焦点を当てています。
我々は、圧縮技術を用いて、よく知られたベンチマークデータセットの実験で議論を裏付ける。
論文 参考訳(メタデータ) (2020-01-07T14:17:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。