論文の概要: The Potential of Combined Learning Strategies to Enhance Energy Efficiency of Spiking Neuromorphic Systems
- arxiv url: http://arxiv.org/abs/2408.07150v1
- Date: Tue, 13 Aug 2024 18:40:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 14:55:43.270022
- Title: The Potential of Combined Learning Strategies to Enhance Energy Efficiency of Spiking Neuromorphic Systems
- Title(参考訳): スパイキングニューロモーフィックシステムのエネルギー効率を高めるための複合学習戦略の可能性
- Authors: Ali Shiri Sichani, Sai Kankatala,
- Abstract要約: この原稿は、畳み込みスパイキングニューラルネットワーク(CSNN)のための新しい複合学習アプローチを通じて、脳にインスパイアされた知覚コンピュータマシンの強化に焦点を当てている。
CSNNは、人間の脳にインスパイアされたエネルギー効率の良いスパイクニューロン処理を提供する、バックプロパゲーションのような従来のパワー集約的で複雑な機械学習手法に代わる、有望な代替手段を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring energy-efficient design in neuromorphic computing systems necessitates a tailored architecture combined with algorithmic approaches. This manuscript focuses on enhancing brain-inspired perceptual computing machines through a novel combined learning approach for Convolutional Spiking Neural Networks (CSNNs). CSNNs present a promising alternative to traditional power-intensive and complex machine learning methods like backpropagation, offering energy-efficient spiking neuron processing inspired by the human brain. The proposed combined learning method integrates Pair-based Spike Timing-Dependent Plasticity (PSTDP) and power law-dependent Spike-timing-dependent plasticity (STDP) to adjust synaptic efficacies, enabling the utilization of stochastic elements like memristive devices to enhance energy efficiency and improve perceptual computing accuracy. By reducing learning parameters while maintaining accuracy, these systems consume less energy and have reduced area overhead, making them more suitable for hardware implementation. The research delves into neuromorphic design architectures, focusing on CSNNs to provide a general framework for energy-efficient computing hardware. Various CSNN architectures are evaluated to assess how less trainable parameters can maintain acceptable accuracy in perceptual computing systems, positioning them as viable candidates for neuromorphic architecture. Comparisons with previous work validate the achievements and methodology of the proposed architecture.
- Abstract(参考訳): ニューロモルフィックコンピューティングシステムにおけるエネルギー効率の高い設計を保証するには、アルゴリズムのアプローチと組み合わされたアーキテクチャが必要である。
この原稿は、畳み込みスパイキングニューラルネットワーク(CSNN)のための新しい複合学習アプローチを通じて、脳にインスパイアされた知覚コンピュータマシンの強化に焦点を当てている。
CSNNは、人間の脳にインスパイアされたエネルギー効率の良いスパイクニューロン処理を提供する、バックプロパゲーションのような従来のパワー集約的で複雑な機械学習手法に代わる、有望な代替手段を提供する。
提案手法は,Pair-based Spike Timing-Dependent Plasticity (PSTDP) と電力法依存のSpike-timing-dependent plasticity (STDP) を統合して,シナプス効果の調整を行う。
精度を維持しながら学習パラメータを減少させることで、これらのシステムはエネルギーを消費し、領域オーバーヘッドを低減し、ハードウェアの実装により適している。
この研究は、エネルギー効率のよいコンピューティングハードウェアのための一般的なフレームワークを提供するため、CSNNに焦点を当てたニューロモルフィックデザインアーキテクチャを掘り下げた。
CSNNアーキテクチャは、知覚コンピューティングシステムにおいて、トレーニング可能なパラメータが許容できる精度をどの程度低く維持できるかを評価するために評価され、ニューロモルフィックアーキテクチャの候補として位置づけられる。
提案したアーキテクチャの成果と方法論を検証した以前の研究との比較。
関連論文リスト
- SpikeAtConv: An Integrated Spiking-Convolutional Attention Architecture for Energy-Efficient Neuromorphic Vision Processing [11.687193535939798]
スパイキングニューラルネットワーク(SNN)は、従来の人工ニューラルネットワークに代わる生物学的にインスパイアされた代替手段を提供する。
SNNは、画像分類などの複雑な視覚的タスクにおいて、まだ競争力のある性能を達成できていない。
本研究では,有効性とタスク精度の向上を目的とした新しいSNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-11-26T13:57:38Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
我々はこれらのシナプス機能を本質的にエミュレートするSrTiO3に基づく膜状ナノデバイスを実証する。
これらのメムリスタは、安定かつエネルギー効率の良い運転を可能にする非定常低導電系で機能する。
論文 参考訳(メタデータ) (2024-02-26T15:01:54Z) - Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking
Neural networks: from Algorithms to Technology [11.479629320025673]
スパイキングニューラルネットワーク(SNN)は、幅広い信号処理アプリケーションのために、ディープニューラルネットワークの魅力的な代替品となっている。
我々は、低レイテンシとエネルギー効率のSNNを効率的に訓練し、拡張するためのアルゴリズムと最適化の進歩について述べる。
デプロイ可能なSNNシステム構築における研究の今後の可能性について論じる。
論文 参考訳(メタデータ) (2023-12-02T19:47:00Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - The Hardware Impact of Quantization and Pruning for Weights in Spiking
Neural Networks [0.368986335765876]
パラメータの量子化とプルーニングは、モデルサイズを圧縮し、メモリフットプリントを削減し、低レイテンシ実行を容易にする。
本研究では,身近な身近なジェスチャー認識システムであるSNNに対して,孤立度,累積的に,そして同時にプルーニングと量子化の様々な組み合わせについて検討する。
本研究では,3次重みまで精度の低下に悩まされることなく,攻撃的パラメータ量子化に対処可能であることを示す。
論文 参考訳(メタデータ) (2023-02-08T16:25:20Z) - ETLP: Event-based Three-factor Local Plasticity for online learning with
neuromorphic hardware [105.54048699217668]
イベントベース3要素局所塑性(ETLP)の計算複雑性に明らかな優位性を有する精度の競争性能を示す。
また, 局所的可塑性を用いた場合, スパイキングニューロンの閾値適応, 繰り返しトポロジーは, 時間的構造が豊富な時間的パターンを学習するために必要であることを示した。
論文 参考訳(メタデータ) (2023-01-19T19:45:42Z) - Bottom-up and top-down approaches for the design of neuromorphic
processing systems: Tradeoffs and synergies between natural and artificial
intelligence [3.874729481138221]
ムーアの法則は指数計算能力の期待を加速させており、システム全体の性能を改善するための新たな方法を求める最終段階に近づいている。
これらの方法の1つは、生物学的ニューラルネットワークシステムの柔軟性と計算効率を達成することを目的とした、脳にインスパイアされた代替コンピューティングアーキテクチャの探索である。
我々は、このパラダイムシフトが実現される際の粒度の異なるレベルについて、その分野の包括的概要を提供する。
論文 参考訳(メタデータ) (2021-06-02T16:51:45Z) - Large-scale neuromorphic optoelectronic computing with a reconfigurable
diffractive processing unit [38.898230519968116]
回折処理ユニットを構築することにより、光電子再構成可能な計算パラダイムを提案する。
異なるニューラルネットワークを効率的にサポートし、数百万のニューロンで高いモデル複雑性を達成することができる。
市販の光電子部品を用いたプロトタイプシステムは,最先端のグラフィックス処理ユニットの性能を超越している。
論文 参考訳(メタデータ) (2020-08-26T16:34:58Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。