論文の概要: Stop-and-Go: Exploring Backdoor Attacks on Deep Reinforcement
Learning-based Traffic Congestion Control Systems
- arxiv url: http://arxiv.org/abs/2003.07859v4
- Date: Thu, 26 Aug 2021 10:42:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 21:13:22.958980
- Title: Stop-and-Go: Exploring Backdoor Attacks on Deep Reinforcement
Learning-based Traffic Congestion Control Systems
- Title(参考訳): ストップ・アンド・ゴー:深い強化学習に基づく交通渋滞制御システムにおけるバックドア攻撃の探索
- Authors: Yue Wang, Esha Sarkar, Wenqing Li, Michail Maniatakos, Saif Eddin
Jabari
- Abstract要約: DRLを用いたAVコントローラのバックドア/トロイジャリングについて検討する。
悪意ある行動としては、車両の減速と加速によって停止・停止する交通波が発生することが挙げられる。
実験により、バックドアモデルが通常の動作性能を損なわないことが示された。
- 参考スコア(独自算出の注目度): 16.01681914880077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work has shown that the introduction of autonomous vehicles (AVs) in
traffic could help reduce traffic jams. Deep reinforcement learning methods
demonstrate good performance in complex control problems, including autonomous
vehicle control, and have been used in state-of-the-art AV controllers.
However, deep neural networks (DNNs) render automated driving vulnerable to
machine learning-based attacks. In this work, we explore the
backdooring/trojanning of DRL-based AV controllers. We develop a trigger design
methodology that is based on well-established principles of traffic physics.
The malicious actions include vehicle deceleration and acceleration to cause
stop-and-go traffic waves to emerge (congestion attacks) or AV acceleration
resulting in the AV crashing into the vehicle in front (insurance attack). We
test our attack on single-lane and two-lane circuits. Our experimental results
show that the backdoored model does not compromise normal operation
performance, with the maximum decrease in cumulative rewards being 1%. Still,
it can be maliciously activated to cause a crash or congestion when the
corresponding triggers appear.
- Abstract(参考訳): 近年の研究では、自動運転車(AV)が交通渋滞の軽減に役立つことが示されている。
深層強化学習手法は、自動運転車制御を含む複雑な制御問題において優れた性能を示し、最先端のavコントローラで使用されてきた。
しかし、ディープニューラルネットワーク(DNN)は、機械学習ベースの攻撃に脆弱な自動運転をレンダリングする。
本研究では,DRLを用いたAVコントローラのバックドア/トロイジャリングについて検討する。
我々は,交通物理の確立した原理に基づくトリガー設計手法を開発した。
悪質な行動には、車両の減速と、停止・停止の交通波を発生させる加速(渋滞攻撃)や、avが前方の車両に衝突するav加速(保険攻撃)が含まれる。
我々は単車線および2車線回路に対する攻撃を試験する。
実験の結果,バックドアモデルでは正常動作性能が損なわれず,累積報酬の最大減少率は1%であった。
それでも、対応するトリガーが現れたときにクラッシュや混雑を引き起こすために悪意あるアクティベートを行うことができる。
関連論文リスト
- Physical Backdoor Attack can Jeopardize Driving with Vision-Large-Language Models [53.701148276912406]
Vision-Large-Language-models (VLMs) は自動運転において大きな応用可能性を持っている。
BadVLMDriverは、物理的オブジェクトを使用して実際に起動できる自動運転のためのVLMに対する最初のバックドア攻撃である。
BadVLMDriverは、赤い風船を持った歩行者に突如、加速を誘導する攻撃の成功率を92%達成する。
論文 参考訳(メタデータ) (2024-04-19T14:40:38Z) - Detecting stealthy cyberattacks on adaptive cruise control vehicles: A
machine learning approach [5.036807309572884]
運転行動がわずかに変化しただけで、より汚い攻撃は、ネットワーク全体の混雑、燃料消費、さらにはクラッシュリスクさえも、容易に検出されずに増加させる可能性がある。
本稿では,車両制御コマンドの不正な操作,センサ計測に対する偽データ注入攻撃,DoS攻撃の3種類のサイバー攻撃に対するトラフィックモデルフレームワークを提案する。
車両軌跡データを用いた攻撃をリアルタイムに識別するために,GANに基づく新しい生成逆数ネットワーク(generative adversarial network, GAN)を用いた異常検出モデルを提案する。
論文 参考訳(メタデータ) (2023-10-26T01:22:10Z) - Robust Autonomous Vehicle Pursuit without Expert Steering Labels [41.168074206046164]
車両追尾用エゴ車両の左右方向と縦方向の動作制御の学習法を提案する。
制御される車両は事前に定義された経路を持たず、安全距離を維持しながら目標車両を追尾するように反応的に適応する。
我々は、CARLAシミュレーターを用いて、幅広い地形における我々のアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2023-08-16T14:09:39Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Infrastructure-based End-to-End Learning and Prevention of Driver
Failure [68.0478623315416]
フェールネットは、規模が拡大したミニ都市において、名目上と無謀なドライバーの両方の軌道上で、エンドツーエンドでトレーニングされた、繰り返しニューラルネットワークである。
制御障害、上流での認識エラー、ドライバーのスピードを正確に識別し、名目運転と区別することができる。
速度や周波数ベースの予測器と比較すると、FailureNetのリカレントニューラルネットワーク構造は予測能力を向上し、ハードウェアにデプロイすると84%以上の精度が得られる。
論文 参考訳(メタデータ) (2023-03-21T22:55:51Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
接続輸送システムにおいて、適応交通信号制御装置(ATSC)は、車両から受信したリアルタイム車両軌跡データを利用して、グリーンタイムを規制する。
この無線接続されたATSCはサイバー攻撃面を増やし、その脆弱性を様々なサイバー攻撃モードに拡大する。
そのようなモードの1つは、攻撃者がネットワーク内で偽の車両を作成する「シビル」攻撃である。
RLエージェントは、シビル車噴射の最適速度を学習し、アプローチの混雑を生じさせるように訓練される
論文 参考訳(メタデータ) (2022-10-31T20:12:17Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - Few-Shot Backdoor Attacks on Visual Object Tracking [80.13936562708426]
視覚オブジェクト追跡(VOT)は、自律運転やインテリジェント監視システムなど、ミッションクリティカルなアプリケーションで広く採用されている。
学習過程の調整により,隠れたバックドアをVOTモデルに容易に埋め込むことができることを示す。
我々の攻撃は潜在的な防御に耐性があることを示し、潜在的なバックドア攻撃に対するVOTモデルの脆弱性を強調します。
論文 参考訳(メタデータ) (2022-01-31T12:38:58Z) - Neural Network Guided Evolutionary Fuzzing for Finding Traffic
Violations of Autonomous Vehicles [15.702721819948623]
既存のテスト方法は、自動運転車のエンドツーエンドの動作をチェックするのに不十分である。
本稿では,広く使用されているAVシミュレータのAPI文法を活用可能な,AutoFuzzと呼ばれるファジテスト手法を提案する。
AutoFuzzは、現実の事故に似た何百もの現実的な交通違反を効率的に見つける。
論文 参考訳(メタデータ) (2021-09-13T17:05:43Z) - Dirty Road Can Attack: Security of Deep Learning based Automated Lane
Centering under Physical-World Attack [38.3805893581568]
本研究では,物理世界の敵対的攻撃下での最先端のディープラーニングに基づくALCシステムの安全性について検討する。
安全クリティカルな攻撃目標と、新しいドメイン固有の攻撃ベクトル、汚い道路パッチで問題を定式化する。
実世界の走行トレースから80のシナリオを用いて実運用ALCに対する攻撃を評価した。
論文 参考訳(メタデータ) (2020-09-14T19:22:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。