Task-Adaptive Clustering for Semi-Supervised Few-Shot Classification
- URL: http://arxiv.org/abs/2003.08221v1
- Date: Wed, 18 Mar 2020 13:50:19 GMT
- Title: Task-Adaptive Clustering for Semi-Supervised Few-Shot Classification
- Authors: Jun Seo, Sung Whan Yoon, Jaekyun Moon
- Abstract summary: Few-shot learning aims to handle previously unseen tasks using only a small amount of new training data.
In preparing (or meta-training) a few-shot learner, however, massive labeled data are necessary.
In this work, we propose a few-shot learner that can work well under the semi-supervised setting where a large portion of training data is unlabeled.
- Score: 23.913195015484696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot learning aims to handle previously unseen tasks using only a small
amount of new training data. In preparing (or meta-training) a few-shot
learner, however, massive labeled data are necessary. In the real world,
unfortunately, labeled data are expensive and/or scarce. In this work, we
propose a few-shot learner that can work well under the semi-supervised setting
where a large portion of training data is unlabeled. Our method employs
explicit task-conditioning in which unlabeled sample clustering for the current
task takes place in a new projection space different from the embedding feature
space. The conditioned clustering space is linearly constructed so as to
quickly close the gap between the class centroids for the current task and the
independent per-class reference vectors meta-trained across tasks. In a more
general setting, our method introduces a concept of controlling the degree of
task-conditioning for meta-learning: the amount of task-conditioning varies
with the number of repetitive updates for the clustering space. Extensive
simulation results based on the miniImageNet and tieredImageNet datasets show
state-of-the-art semi-supervised few-shot classification performance of the
proposed method. Simulation results also indicate that the proposed
task-adaptive clustering shows graceful degradation with a growing number of
distractor samples, i.e., unlabeled sample images coming from outside the
candidate classes.
Related papers
- Integrated Image-Text Based on Semi-supervised Learning for Small Sample Instance Segmentation [1.3157419797035321]
The article proposes a novel small sample instance segmentation solution from the perspective of maximizing the utilization of existing information.
First, it helps the model fully utilize unlabeled data by learning to generate pseudo labels, increasing the number of available samples.
Second, by integrating the features of text and image, more accurate classification results can be obtained.
arXiv Detail & Related papers (2024-10-21T14:44:08Z) - Investigating Self-Supervised Methods for Label-Efficient Learning [27.029542823306866]
We study different self supervised pretext tasks, namely contrastive learning, clustering, and masked image modelling for their low-shot capabilities.
We introduce a framework involving both mask image modelling and clustering as pretext tasks, which performs better across all low-shot downstream tasks.
When testing the model on full scale datasets, we show performance gains in multi-class classification, multi-label classification and semantic segmentation.
arXiv Detail & Related papers (2024-06-25T10:56:03Z) - Budget-aware Few-shot Learning via Graph Convolutional Network [56.41899553037247]
This paper tackles the problem of few-shot learning, which aims to learn new visual concepts from a few examples.
A common problem setting in few-shot classification assumes random sampling strategy in acquiring data labels.
We introduce a new budget-aware few-shot learning problem that aims to learn novel object categories.
arXiv Detail & Related papers (2022-01-07T02:46:35Z) - Conditional Meta-Learning of Linear Representations [57.90025697492041]
Standard meta-learning for representation learning aims to find a common representation to be shared across multiple tasks.
In this work we overcome this issue by inferring a conditioning function, mapping the tasks' side information into a representation tailored to the task at hand.
We propose a meta-algorithm capable of leveraging this advantage in practice.
arXiv Detail & Related papers (2021-03-30T12:02:14Z) - Few-shot Weakly-Supervised Object Detection via Directional Statistics [55.97230224399744]
We propose a probabilistic multiple instance learning approach for few-shot Common Object Localization (COL) and few-shot Weakly Supervised Object Detection (WSOD)
Our model simultaneously learns the distribution of the novel objects and localizes them via expectation-maximization steps.
Our experiments show that the proposed method, despite being simple, outperforms strong baselines in few-shot COL and WSOD, as well as large-scale WSOD tasks.
arXiv Detail & Related papers (2021-03-25T22:34:16Z) - Meta-Regularization by Enforcing Mutual-Exclusiveness [0.8057006406834467]
We propose a regularization technique for meta-learning models that gives the model designer more control over the information flow during meta-training.
Our proposed regularization function shows an accuracy boost of $sim$ $36%$ on the Omniglot dataset.
arXiv Detail & Related papers (2021-01-24T22:57:19Z) - Few-Shot Learning with Intra-Class Knowledge Transfer [100.87659529592223]
We consider the few-shot classification task with an unbalanced dataset.
Recent works have proposed to solve this task by augmenting the training data of the few-shot classes using generative models.
We propose to leverage the intra-class knowledge from the neighbor many-shot classes with the intuition that neighbor classes share similar statistical information.
arXiv Detail & Related papers (2020-08-22T18:15:38Z) - Adaptive Task Sampling for Meta-Learning [79.61146834134459]
Key idea of meta-learning for few-shot classification is to mimic the few-shot situations faced at test time.
We propose an adaptive task sampling method to improve the generalization performance.
arXiv Detail & Related papers (2020-07-17T03:15:53Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z) - Weakly-supervised Object Localization for Few-shot Learning and
Fine-grained Few-shot Learning [0.5156484100374058]
Few-shot learning aims to learn novel visual categories from very few samples.
We propose a Self-Attention Based Complementary Module (SAC Module) to fulfill the weakly-supervised object localization.
We also produce the activated masks for selecting discriminative deep descriptors for few-shot classification.
arXiv Detail & Related papers (2020-03-02T14:07:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.