論文の概要: Placement Optimization with Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2003.08445v1
- Date: Wed, 18 Mar 2020 19:20:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 10:06:19.973231
- Title: Placement Optimization with Deep Reinforcement Learning
- Title(参考訳): 深層強化学習による配置最適化
- Authors: Anna Goldie and Azalia Mirhoseini
- Abstract要約: まず、配置問題の解決策として強化学習を動機づけることから始める。
次に、深い強化学習とは何かの概要を示す。
政策勾配の最適化によってこの問題をいかに解決できるかを示す。
- 参考スコア(独自算出の注目度): 3.6109162150609992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Placement Optimization is an important problem in systems and chip design,
which consists of mapping the nodes of a graph onto a limited set of resources
to optimize for an objective, subject to constraints. In this paper, we start
by motivating reinforcement learning as a solution to the placement problem. We
then give an overview of what deep reinforcement learning is. We next formulate
the placement problem as a reinforcement learning problem and show how this
problem can be solved with policy gradient optimization. Finally, we describe
lessons we have learned from training deep reinforcement learning policies
across a variety of placement optimization problems.
- Abstract(参考訳): 配置最適化はシステムやチップ設計において重要な問題であり、グラフのノードを制約の対象となる目的のために最適化するための限られたリソースセットにマッピングする。
本稿では,配置問題の解法として強化学習を動機づけることから始める。
次に、深い強化学習とは何かの概要を示す。
次に、配置問題を強化学習問題として定式化し、政策勾配最適化を用いてこの問題をいかに解決できるかを示す。
最後に,様々な配置最適化問題に対する深層強化学習政策の訓練から学んだ教訓について述べる。
関連論文リスト
- Rethinking Optimal Transport in Offline Reinforcement Learning [64.56896902186126]
オフラインの強化学習では、データはさまざまな専門家によって提供され、一部は準最適である。
効率的なポリシを抽出するには、データセットから最高の振る舞いを強調する必要がある。
本稿では,各状態に対する最善の専門家行動の公平な分布に状態をマッピングするポリシーを見つけることを目的としたアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-17T22:36:43Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
エージェントが隣人としか通信できないネットワーク上での分散マルチレベル最適化の問題について検討する。
ネットワーク化されたエージェントが1つの時間スケールで異なるレベルの最適化問題を解くことができる新しいゴシップに基づく分散マルチレベル最適化アルゴリズムを提案する。
提案アルゴリズムは, ネットワークサイズと線形にスケーリングし, 各種アプリケーション上での最先端性能を示す。
論文 参考訳(メタデータ) (2023-10-10T00:21:10Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Compositional Reinforcement Learning from Logical Specifications [21.193231846438895]
最近のアプローチでは、与えられた仕様から報酬関数を自動的に生成し、適切な強化学習アルゴリズムを用いてポリシーを学習する。
我々は、高レベルの計画と強化学習をインターリーブする、DiRLと呼ばれる構成学習手法を開発した。
提案手法では,各エッジ(サブタスク)のニューラルネットワークポリシをDijkstraスタイルの計画アルゴリズムで学習し,グラフの高レベルプランを計算する。
論文 参考訳(メタデータ) (2021-06-25T22:54:28Z) - Reversible Action Design for Combinatorial Optimization with
Reinforcement Learning [35.50454156611722]
強化学習(rl)は、これらの問題に取り組むための新しいフレームワークとして最近登場した。
最先端の実証性能を示すだけでなく、様々な種類のCOPに一般化する汎用RLフレームワークを提案します。
論文 参考訳(メタデータ) (2021-02-14T18:05:42Z) - Learning to Optimize Under Constraints with Unsupervised Deep Neural
Networks [0.0]
機械学習(ML)手法を提案し,汎用的制約付き連続最適化問題の解法を学習する。
本稿では,制約付き最適化問題をリアルタイムに解くための教師なしディープラーニング(DL)ソリューションを提案する。
論文 参考訳(メタデータ) (2021-01-04T02:58:37Z) - Visualizing the Loss Landscape of Actor Critic Methods with Applications
in Inventory Optimization [0.0]
最適化の重要な部分であるアクター損失関数の特徴を示す。
我々は,サプライチェーンの運用において非常に困難な問題である多店舗動的在庫管理にアプローチを適用し,最適政策に関連する損失関数の形状を探索する。
論文 参考訳(メタデータ) (2020-09-04T20:52:05Z) - Learning 2-opt Heuristics for the Traveling Salesman Problem via Deep
Reinforcement Learning [2.4565068569913384]
本研究では,2オプト演算子に基づく局所的な探索勾配を深層強化学習により学習することを提案する。
学習したポリシは、ランダムな初期解よりも改善でき、従来の最先端のディープラーニング手法よりも高速に、ほぼ最適解にアプローチできることを示す。
論文 参考訳(メタデータ) (2020-04-03T14:51:54Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
無線ネットワークにおけるリソース割り当てとトランシーバーは、通常最適化問題の解決によって設計される。
本稿では,変数最適化と関数最適化の両問題を解くための教師なし・教師なし学習フレームワークを紹介する。
論文 参考訳(メタデータ) (2020-01-03T11:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。